Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of...Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.展开更多
Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe ...Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe global one-dimensional(1D)mantle conductivity structures.Using this scheme,we present a new global mantle conductivity model by analyzing over 8 years of Swarm satellite magnetic data.First,after sophisticated data selection procedures and the removal of core and crustal fields,the inducing and induced spherical harmonic coefficients of magnetic potential due to the magnetospheric ring current are derived.Second,satellite Cresponses are estimated from the time series of these coefficients.Finally,the observed responses are inverted for both smooth and threejump conductivity models using a quasi-Newton algorithm.The obtained conductivity models are in general agreement with previous global mantle conductivity models.A comparison of our conductivity model with the laboratory conductivity model suggests the mean state of the upper mantle and transition zone is relatively dry.This scheme can be used to process the forthcoming Macao Science Satellite-1 magnetic data.展开更多
Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic ano...Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic anomalies in China and surrounding regions are relatively weak.Specialized research on each of these anomalies has been quite inadequate;their geological origins remain unclear,in particular their connection to tectonic activity in the Chinese and surrounding regions.We focus on six magnetic high anomalies over the(1)Tarim Basin,(2)Sichuan Basin(3)Great Xing’an Range,(4)Barmer Basin,(5)Central Myanmar Basin,and(6)Sunda and Banda Arcs,and a striking magnetic low anomaly along the southern part of the Himalayan-Tibetan Plateau.We have analyzed their geological origins by reviewing related research and by detailed comparison with geological results.The tectonic backgrounds for these anomalies belong to two cases:either ancient basin basement,or subduction-collision zone.However,the geological origins of large-scale regional magnetic anomalies are always subject to dispute,mainly because of limited surface exposure of sources,later tectonic destruction,and superposition of multi-phase events.展开更多
Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.I...Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.In this paper,the geodetic satellites and photographic satellites are introduced respectively.Then,the existing problems in Chinese earth observation satellites are analyzed,and the comprehensive satellite with integrated payloads,the intensive microsatellite constellation and the intelligent observation satellite are proposed as three different development ideas for the future earth observation satellites.The possibility of the three ideas is discussed in detail,as well as the related key technologies.展开更多
We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems(planetary magnetospheres, magnetosphere-ionosphere and magnetospheresatellite coupling, and star-p...We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems(planetary magnetospheres, magnetosphere-ionosphere and magnetospheresatellite coupling, and star-planet interactions), and the physical information that can be drawn from their detection. The latter scenario is especially favorable to the production of radio emission above 70 MHz. We summarize the results of past and recent radio searches, and then discuss FAST characteristics and observation strategy, including synergies. We emphasize the importance of polarization measurements and a high duty-cycle for the very weak targets that radio-exoplanets prove to be.展开更多
The geometry and evolution of pre-existing basement in accretionary belts bordering supercontinents are often unclear.Integrative interpretation of long-wavelength potential field satellite data can image deep crust s...The geometry and evolution of pre-existing basement in accretionary belts bordering supercontinents are often unclear.Integrative interpretation of long-wavelength potential field satellite data can image deep crust structure,improving our understanding of lithospheric processes that formed these margins bottom-up.Here,we present a multidisciplinary interpretation of the lithospheric architecture of the central southern Amazon Craton,a fragment of an accretionary belt at the southwestern Columbia supercontinent margin.Satellite-borne gravity and magnetic data,airborne magnetic data,passive seismic(V_(p)/V_(s) ratio,crustal thickness)and seismic tomography data reveals that basement terranes from the interior of the craton extend into the accretionary margin of Columbia.We demonstrate a vertically heterogeneous structure with an underlying strongly reworked pre-Columbia tectonic wedge that sustained prolonged modification during the supercontinent assembly as corroborated by Nd isotope and geochronology data.Nd isotope data suggest that the protracted orogenic wedge was influenced by subduction angle shifts over time,including addition of substantial juvenile material during slab retreat events.This interplay promoted Craton growth at the supercontinent margin while keeping a subtle record of the pre-existing framework.Our findings point to the possible misrepresentation of basement extension and geometry of supercontinent margins elsewhere.展开更多
The remnant magnetism in the crust of Martian southern highland is associated with the magnetic sources at an average depth of~32 km.In this work,we investigate the magnetization of Martian crust via 1-D parameterized...The remnant magnetism in the crust of Martian southern highland is associated with the magnetic sources at an average depth of~32 km.In this work,we investigate the magnetization of Martian crust via 1-D parameterized model for the stagnant-lid mantle convection.According to our model,the magnetization of Martian crust is likely to take place in the top-down manner during 4.1-3.7 Ga.To reproduce the average depth of magnetic sources below the southern highland,magnetite and Mg-ferrite are anticipated to be the magnetic carriers in the Martian crust,implying the serpentinisation therein.If magnetite is the only magnetic carrier in the Martian crust,the early climate must be warm enough to maintain a surface temperature of 300 K during 4.1-3.7 Ga at least.Such a warm climate is more likely to be a regional phenomenon associated with the serpentinisation in the crust of the southern highland or the hot ejecta of Borialis impact depositing on the southern hemisphere.展开更多
基金supported financially by the National Natural Science Foundation of China(42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1).
文摘Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.
基金financially supported by the National Natural Science Foundation of China(41922027,41830107,42142034,41874086)Innovation-Driven Project of Central South University(2020CX012)+4 种基金Macao FoundationMacao Science and Technology Development Fund(0001/2019/A1)the Pre-research Project on Civil Aerospace Technologies funded by China National Space Administration(D020303)the Hunan Provincial Innovation Foundation for Postgraduate(CX20210277)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0259)。
文摘Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe global one-dimensional(1D)mantle conductivity structures.Using this scheme,we present a new global mantle conductivity model by analyzing over 8 years of Swarm satellite magnetic data.First,after sophisticated data selection procedures and the removal of core and crustal fields,the inducing and induced spherical harmonic coefficients of magnetic potential due to the magnetospheric ring current are derived.Second,satellite Cresponses are estimated from the time series of these coefficients.Finally,the observed responses are inverted for both smooth and threejump conductivity models using a quasi-Newton algorithm.The obtained conductivity models are in general agreement with previous global mantle conductivity models.A comparison of our conductivity model with the laboratory conductivity model suggests the mean state of the upper mantle and transition zone is relatively dry.This scheme can be used to process the forthcoming Macao Science Satellite-1 magnetic data.
基金the National Natural Science Foundation of China(grant numbers 42004051,42274214,41904134).
文摘Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic anomalies in China and surrounding regions are relatively weak.Specialized research on each of these anomalies has been quite inadequate;their geological origins remain unclear,in particular their connection to tectonic activity in the Chinese and surrounding regions.We focus on six magnetic high anomalies over the(1)Tarim Basin,(2)Sichuan Basin(3)Great Xing’an Range,(4)Barmer Basin,(5)Central Myanmar Basin,and(6)Sunda and Banda Arcs,and a striking magnetic low anomaly along the southern part of the Himalayan-Tibetan Plateau.We have analyzed their geological origins by reviewing related research and by detailed comparison with geological results.The tectonic backgrounds for these anomalies belong to two cases:either ancient basin basement,or subduction-collision zone.However,the geological origins of large-scale regional magnetic anomalies are always subject to dispute,mainly because of limited surface exposure of sources,later tectonic destruction,and superposition of multi-phase events.
基金National Natural Science Foundation of China(No.41931076)National Natural Science Foundation for Young Scholars of China(No.41904042)。
文摘Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.In this paper,the geodetic satellites and photographic satellites are introduced respectively.Then,the existing problems in Chinese earth observation satellites are analyzed,and the comprehensive satellite with integrated payloads,the intensive microsatellite constellation and the intelligent observation satellite are proposed as three different development ideas for the future earth observation satellites.The possibility of the three ideas is discussed in detail,as well as the related key technologies.
基金supported by the National Key R&D Program No. 2017YFA0402600the CAS International Partnership Program No. 14A11KYSB20160008the NSFC grant No. 11725313
文摘We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems(planetary magnetospheres, magnetosphere-ionosphere and magnetospheresatellite coupling, and star-planet interactions), and the physical information that can be drawn from their detection. The latter scenario is especially favorable to the production of radio emission above 70 MHz. We summarize the results of past and recent radio searches, and then discuss FAST characteristics and observation strategy, including synergies. We emphasize the importance of polarization measurements and a high duty-cycle for the very weak targets that radio-exoplanets prove to be.
基金the Brazilian National Council for Scientific and Technological Development (CNPq) (309712/2017-30)Brazilian Coordination for the Improvement of Higher Level Personnel (CAPES) (88881.188918/2018-01)+1 种基金Brazilian National Council for Scientific and Technological Development (CNPq Process #404767/2016-8)São Paulo Research Foundation (FAPESP Process #2021/00967-5)
文摘The geometry and evolution of pre-existing basement in accretionary belts bordering supercontinents are often unclear.Integrative interpretation of long-wavelength potential field satellite data can image deep crust structure,improving our understanding of lithospheric processes that formed these margins bottom-up.Here,we present a multidisciplinary interpretation of the lithospheric architecture of the central southern Amazon Craton,a fragment of an accretionary belt at the southwestern Columbia supercontinent margin.Satellite-borne gravity and magnetic data,airborne magnetic data,passive seismic(V_(p)/V_(s) ratio,crustal thickness)and seismic tomography data reveals that basement terranes from the interior of the craton extend into the accretionary margin of Columbia.We demonstrate a vertically heterogeneous structure with an underlying strongly reworked pre-Columbia tectonic wedge that sustained prolonged modification during the supercontinent assembly as corroborated by Nd isotope and geochronology data.Nd isotope data suggest that the protracted orogenic wedge was influenced by subduction angle shifts over time,including addition of substantial juvenile material during slab retreat events.This interplay promoted Craton growth at the supercontinent margin while keeping a subtle record of the pre-existing framework.Our findings point to the possible misrepresentation of basement extension and geometry of supercontinent margins elsewhere.
基金financed by the National Natural Science Foundation of China(Grant No.12022517)the Science and Technology Development Fund,Macao SAR(File No.0048/2020/A1)the Pre-Research Projects on Civil Aerospace Technologies of China National Space Administration(Grant Nos.D020308 and D020303)。
文摘The remnant magnetism in the crust of Martian southern highland is associated with the magnetic sources at an average depth of~32 km.In this work,we investigate the magnetization of Martian crust via 1-D parameterized model for the stagnant-lid mantle convection.According to our model,the magnetization of Martian crust is likely to take place in the top-down manner during 4.1-3.7 Ga.To reproduce the average depth of magnetic sources below the southern highland,magnetite and Mg-ferrite are anticipated to be the magnetic carriers in the Martian crust,implying the serpentinisation therein.If magnetite is the only magnetic carrier in the Martian crust,the early climate must be warm enough to maintain a surface temperature of 300 K during 4.1-3.7 Ga at least.Such a warm climate is more likely to be a regional phenomenon associated with the serpentinisation in the crust of the southern highland or the hot ejecta of Borialis impact depositing on the southern hemisphere.