A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield...A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.展开更多
The shielding property of cylinder with circular, square, and equilateral triangle holes was investigated by finite element analysis(FEA). The hole area(S_(hole)) plays an important role in magnetic circuit on the sur...The shielding property of cylinder with circular, square, and equilateral triangle holes was investigated by finite element analysis(FEA). The hole area(S_(hole)) plays an important role in magnetic circuit on the surface of cylinder. When Sholeis less than the critical area(S_(H)), cylinder with three shapes of holes obtained the same remanent magnetization inside,indicating that the shielding property is unaffected by the shape of the hole. Hence, high-permeability material is the major path of the magnetic field. On the condition of S_(hole)> S_(H), the sequence of the shielding property is equilateral triangle >square > circular, resulting from magnetoresistance of leakage flux in air dielectric. Besides, the anisotropy of shielding property caused by hole structural differences of the cylinder is evaluated. We find that a good shielding effectiveness is gained in the radial direction, compared with the axis direction. This research focuses on providing a theoretical support for the design of magnetic shield and improvement on the magnetic shielding ability.展开更多
Magnetic shielding is very important in the design of a high-power dc comparator. This paper addressed the application of magnetic circuit method to calculate the magnetic shielding effectiveness of high-power dc comp...Magnetic shielding is very important in the design of a high-power dc comparator. This paper addressed the application of magnetic circuit method to calculate the magnetic shielding effectiveness of high-power dc comparators when an external radial magnetic field is added. The mathematical relationship between the magnetic shielding effectiveness and the parameters of the magnetic shielding body were obtained. To verify the validity of the calculation method, we developped a procedure to measure the magnetic shielding effectiveness of the magnetic body by measuring the induction voltage of the detection winding instead of the magnetic intensity at a point in the magnetic shielding body, making the manipulation much easier. The result calculated with the magnetic circuit method turns out to be closer to the measured one compared with that calculated with a conventional algorithm proposed by Ren, suggesting that the magnetic circuit method is an applicable tool for estimating the toroidal cavity magnetic shielding effectiveness of a heavy current comparator when a radial magnetic field is added.展开更多
There are magnetic interference problems in the applications of DC current comparator. Analysis on the magnetic effectiveness which is applied by the external magnetic field is introduced in this paper. The effectiven...There are magnetic interference problems in the applications of DC current comparator. Analysis on the magnetic effectiveness which is applied by the external magnetic field is introduced in this paper. The effectiveness is proved by the actual results which are compared with the magnetic- circuit method and the finite element method. In addition, the reference comment is given which can be used in the practical work of DC current comparator shield design.展开更多
High magnetic protective fabrics with rare earth Nd doped Fe_(3)O_(4) nanoparticles were fabricated via a grafting method.The structure,crystal form,and elemental composition of nanoparticles were investigated by tran...High magnetic protective fabrics with rare earth Nd doped Fe_(3)O_(4) nanoparticles were fabricated via a grafting method.The structure,crystal form,and elemental composition of nanoparticles were investigated by transmission electron microscopy,energy dispersive X-ray,X-ray powder diffraction,and X-ray photoelectron spectroscopy.The obtained NdFe_(2)O_(4) nanoparticles show spherical shape with fine dispersion and reasonable element composition.However,they demonstrate fine superparamagnetic properties with a magnetic saturation value of 29.25 A·m^(2)/g and low coercivity of 1.902 mT through the vibrating sample magnetometry technique,which can be well developed in magnetic shielding protective applications.Then,the cotton fabrics with plain weave were finished by a proofing rapier loom as a carrier.The NdFe_(2)O_(4) nanoparticles underwent some appropriate surface modification and then were grafted onto the cotton fabrics by a bridge agent of N,N’-dissuccinimidyl carbonate.The morphology,structure,dispersion effect,and electromagnetic protective properties of the fabrics were observed through scanning electron microscopy,Fourier infrared spectroscopy,thermogravimetric analysisdifferential scanning calorimetry(TG-DSC),and a vector network analyzer.The reliable fabrics with grafting reaction on the interface are expected to have potential applications in the field of electromagnetic protection and biomedicine fields.展开更多
High magnetic field shielding has been increasingly important for engineering design in recent years. In this report, a cylindric shield made from soft iron is studied using FEM (finite element method) analysis and ...High magnetic field shielding has been increasingly important for engineering design in recent years. In this report, a cylindric shield made from soft iron is studied using FEM (finite element method) analysis and COlnpared with experiments. The residual fields inside the shield are calculated and measured in both parallel and perpendicular fields up to 2000 Gs. The calculated results are compared with the experiments, and the input B-H curve is modified for a better conformity. The results indicate that the covers could greatly improve the shielding performance of the cylindric shield in our research. The comparison result shows that a proper B-H curve, which can well describe the material properties, is very important in FEM analysis and should be selected carefully.展开更多
Magnetic shielding of grain-oriented silicon steel was investigated. Ball scribing with spacing of 2 to 16 mm was performed at peak flux densities of 8.0 mT to 1.3 T. Magnetic shielding efficiency was calculated, incl...Magnetic shielding of grain-oriented silicon steel was investigated. Ball scribing with spacing of 2 to 16 mm was performed at peak flux densities of 8.0 mT to 1.3 T. Magnetic shielding efficiency was calculated, including absorption, reflection and inner multi-reflection shielding efficiencies. Magnetic shielding efficiency (MSE) increase ratios after different scribing spacing were compared, and thickness requirement to achieve absorption shielding of 50 dB was also calculated. The results show that magnetic shielding efficiencies of C711 and H668 silicon steels increase by 4.79 and 3.15 dB respectively after scribing of 16 mm. Before scribing, shielding efficiency of H668 steel was higher than that of C711 steel, while after scribing, both absorption and shielding efficiency gaps were largely abridged between C711 and H668 steels. Plate thickness of C711 steel could be reduced from 3.18 mm without scribing to 2. 20 mm after scribing of 16 mm. There is no apparent thickness reduction at lower flux densities; while the peak flux density is above 0.3 T, the shielding effect becomes apparent, and the thickness could be reduced from 2.28 mm without scribing to 1.70 mm with scribing spacing of 16 ram. Magnetizing process and its effect on variation of magnetic shielding were also analyzed.展开更多
The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic f...The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.展开更多
Ni layers were deposited on the two sides of pure Fe substrate by using electroplating to form Ni/Fe/Ni diffusion couple. After diffusion heat treatment, Fe-Ni laminated composite was obtained with Fe-Ni alloy/Fe/Fe-N...Ni layers were deposited on the two sides of pure Fe substrate by using electroplating to form Ni/Fe/Ni diffusion couple. After diffusion heat treatment, Fe-Ni laminated composite was obtained with Fe-Ni alloy/Fe/Fe-Ni alloy structure. The results indicate that the Fe-Ni layers combine well with the substrate and the Fe-Ni/Fe interface presents an interlocking microstructure with small-size grains. The concentration of element Ni in the Fe-Ni layer decreases from surface to interior exhibiting a gradient distribution. Geomagnetic shielding factor (SF) of Fe-Ni laminated composite can reach as high as 22.6, which is about seven times of that of pure Fe substrate. Mathematical equation of SF for laminated structure was derived according to magnetic circuit and resistance theory. The theoretical expression reveals that parameters such as the thickness and magnetic permeability of the shield material play an important role in the magnetic shielding behavior and the theoretical calculation results of SF coincide well with our experimental values.展开更多
The magnetic characteristics of R5610A-01 photomultiplier tubes are studied in this paper. The experimental data shows that the gain of R5610A-01 loses about 53% when the magnetic field is 3 Gs along its +X axis. A c...The magnetic characteristics of R5610A-01 photomultiplier tubes are studied in this paper. The experimental data shows that the gain of R5610A-01 loses about 53% when the magnetic field is 3 Gs along its +X axis. A cylinder of one-layer permalloy strip is able to reduce the effect of a 3 Gs magnetic field on the PMT gain to less than 1%.展开更多
Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shie...Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.展开更多
To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study wa...To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.展开更多
A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which w...A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam's direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell's transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium's D1 line. Furthermore, the residual magnetic fields are measured with σ+- and σ--polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm.展开更多
Motivated by ITER(the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the ...Motivated by ITER(the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the finite element method with a nonlinear magnetization curve. The geometrical aspects of shielding performance are identified and corresponding suggestions for application are provided. Among them, the effects of the edge and cover thickness have not been mentioned elsewhere to our knowledge.展开更多
Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offe...Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.展开更多
The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functiona...The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functionality. These include mitigating interference from magnetic fields and vibrations, which are critical for maintaining the precision and accuracy of the instruments used. This study aims to offer enhanced project management strategies and detailed construction solutions that address the environmental and technical needs specific to electron microscopy labs, thereby facilitating effective lab operations and extending the lifecycle of high-end precision instruments. Case studies of existing laboratory constructions, onsite investigations, and comprehensive reviews of the technical and environmental requirements provide the basis for a best practice for constructing sophisticated electron microscopy labs. The approach integrates both pre-construction planning and post-construction adjustments to create optimal operational environments. The findings suggest that successful lab constructions are those that incorporate thorough onsite assessments, strategic location choices, and the use of advanced construction materials and techniques specifically designed to counteract environmental challenges like magnetic and vibration interferences. Actionable guidelines for both planning and executing the construction of electron microscope labs highlighted in this tutorial are intended as an important resource to troubleshoot or upgrade existing lab facilities and to consult in preparation of future lab construction projects.展开更多
Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency s...Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.展开更多
The magnetic mirror field caused by a pair of mild steel circular in 15mm diameter, 2 mm thickness placed outside the discharge chamber can increase the atom ion ratio of nitrogen from 66% to 81 %, and the heating fil...The magnetic mirror field caused by a pair of mild steel circular in 15mm diameter, 2 mm thickness placed outside the discharge chamber can increase the atom ion ratio of nitrogen from 66% to 81 %, and the heating filament current can be decreased from 130 A down to 100 A for a new filament of 2 mm in diameter. The Mo shield cylinders in 14mm diameter put behind the reflect cathode surrounding the BN insulator prevent the metallization of BN insulators, and result in increasing the stability of arc discharge till to the end of filament working life. Because it restricts the deposition of the sputtered W and Mo atoms on the BN insulator, and maintains a high resistance of 70 Mad between the anode and cathode. The combination of cathode shield cylinder and forming magnetic mirror field improves the running property, life of the Freeman source being about 40 h.展开更多
Wireless Power Transfer(WPT)charging systems can cause eddy loss on the steel part and the chassis of an Electric Vehicle(EV).To study different shielding structures’influence on the transmission efficiency of a WPT ...Wireless Power Transfer(WPT)charging systems can cause eddy loss on the steel part and the chassis of an Electric Vehicle(EV).To study different shielding structures’influence on the transmission efficiency of a WPT system,boundary conditions and assumptions of the WPT model in a quasistationary electromagnetic field were established and a finite element method(FEM)was adopted.The shielding effectiveness of ferrite plate and annular aluminum plate were investigated as well as their effects on the coupling coefficient of WPT.It was found that,the setting of ferrite core enhanced the transmission field strength,improved the coupling between two coils,and increased transmit power as well as the actual eddy loss.The actual necessary shielding-area was not confined into the samesize area but distributed around the edge of the ferrite.By arranging specialized size annular aluminum plates between the chassis and ferrite core,the eddy loss can be effectively shielded and an optimal transmission efficiency can breached with an acceptable coupling coefficient decrease.The optimized ferrite bar structure and its EMC characteristics were also studied.It was also found that with equal volume,the optimized ferrite bar structure had better performance in EMC and coupling enhancement than the full ferrite plate.展开更多
This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS). The magnetic field is provided by one main, two bucking and four racetrack coils. The main coil produces a central...This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS). The magnetic field is provided by one main, two bucking and four racetrack coils. The main coil produces a central field of up to 7 T and the effective length is more than 140 mm, the two bucking coils can shield most of the fringe field, and the four racetrack superconducting coils produce the steering magnetic field. Its leakage field in the cavity zone is about 5 × 10^-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively. The quench calculations and protection system are also discussed.展开更多
基金the National Natural Science Foundation of China under Grant 51807094。
文摘A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.
基金supported by the Key Projects of the National Natural Science Foundation of China (Grant No. 51535002)the Programme of Introducing Talents of Discipline to Universities (Grant No. D17021)。
文摘The shielding property of cylinder with circular, square, and equilateral triangle holes was investigated by finite element analysis(FEA). The hole area(S_(hole)) plays an important role in magnetic circuit on the surface of cylinder. When Sholeis less than the critical area(S_(H)), cylinder with three shapes of holes obtained the same remanent magnetization inside,indicating that the shielding property is unaffected by the shape of the hole. Hence, high-permeability material is the major path of the magnetic field. On the condition of S_(hole)> S_(H), the sequence of the shielding property is equilateral triangle >square > circular, resulting from magnetoresistance of leakage flux in air dielectric. Besides, the anisotropy of shielding property caused by hole structural differences of the cylinder is evaluated. We find that a good shielding effectiveness is gained in the radial direction, compared with the axis direction. This research focuses on providing a theoretical support for the design of magnetic shield and improvement on the magnetic shielding ability.
基金Funded by the Natural Science Foundation of China under the grant number 50277018.
文摘Magnetic shielding is very important in the design of a high-power dc comparator. This paper addressed the application of magnetic circuit method to calculate the magnetic shielding effectiveness of high-power dc comparators when an external radial magnetic field is added. The mathematical relationship between the magnetic shielding effectiveness and the parameters of the magnetic shielding body were obtained. To verify the validity of the calculation method, we developped a procedure to measure the magnetic shielding effectiveness of the magnetic body by measuring the induction voltage of the detection winding instead of the magnetic intensity at a point in the magnetic shielding body, making the manipulation much easier. The result calculated with the magnetic circuit method turns out to be closer to the measured one compared with that calculated with a conventional algorithm proposed by Ren, suggesting that the magnetic circuit method is an applicable tool for estimating the toroidal cavity magnetic shielding effectiveness of a heavy current comparator when a radial magnetic field is added.
文摘There are magnetic interference problems in the applications of DC current comparator. Analysis on the magnetic effectiveness which is applied by the external magnetic field is introduced in this paper. The effectiveness is proved by the actual results which are compared with the magnetic- circuit method and the finite element method. In addition, the reference comment is given which can be used in the practical work of DC current comparator shield design.
基金Project supported by the Natural Science Foundation of Fujian Province(2020J01849)Major Science and Technology Project of Fuzhou(2021ZD298)+1 种基金Science and Technology Projects of Fujian Province(2021H0037)Research Project of the Fashu Foundation(MFK23004)。
文摘High magnetic protective fabrics with rare earth Nd doped Fe_(3)O_(4) nanoparticles were fabricated via a grafting method.The structure,crystal form,and elemental composition of nanoparticles were investigated by transmission electron microscopy,energy dispersive X-ray,X-ray powder diffraction,and X-ray photoelectron spectroscopy.The obtained NdFe_(2)O_(4) nanoparticles show spherical shape with fine dispersion and reasonable element composition.However,they demonstrate fine superparamagnetic properties with a magnetic saturation value of 29.25 A·m^(2)/g and low coercivity of 1.902 mT through the vibrating sample magnetometry technique,which can be well developed in magnetic shielding protective applications.Then,the cotton fabrics with plain weave were finished by a proofing rapier loom as a carrier.The NdFe_(2)O_(4) nanoparticles underwent some appropriate surface modification and then were grafted onto the cotton fabrics by a bridge agent of N,N’-dissuccinimidyl carbonate.The morphology,structure,dispersion effect,and electromagnetic protective properties of the fabrics were observed through scanning electron microscopy,Fourier infrared spectroscopy,thermogravimetric analysisdifferential scanning calorimetry(TG-DSC),and a vector network analyzer.The reliable fabrics with grafting reaction on the interface are expected to have potential applications in the field of electromagnetic protection and biomedicine fields.
文摘High magnetic field shielding has been increasingly important for engineering design in recent years. In this report, a cylindric shield made from soft iron is studied using FEM (finite element method) analysis and COlnpared with experiments. The residual fields inside the shield are calculated and measured in both parallel and perpendicular fields up to 2000 Gs. The calculated results are compared with the experiments, and the input B-H curve is modified for a better conformity. The results indicate that the covers could greatly improve the shielding performance of the cylindric shield in our research. The comparison result shows that a proper B-H curve, which can well describe the material properties, is very important in FEM analysis and should be selected carefully.
基金Item Sponsored by National Natural Science Foundation of China(51174057,51274062)National High Technology Research and Development Program of China(2012AA03A503)
文摘Magnetic shielding of grain-oriented silicon steel was investigated. Ball scribing with spacing of 2 to 16 mm was performed at peak flux densities of 8.0 mT to 1.3 T. Magnetic shielding efficiency was calculated, including absorption, reflection and inner multi-reflection shielding efficiencies. Magnetic shielding efficiency (MSE) increase ratios after different scribing spacing were compared, and thickness requirement to achieve absorption shielding of 50 dB was also calculated. The results show that magnetic shielding efficiencies of C711 and H668 silicon steels increase by 4.79 and 3.15 dB respectively after scribing of 16 mm. Before scribing, shielding efficiency of H668 steel was higher than that of C711 steel, while after scribing, both absorption and shielding efficiency gaps were largely abridged between C711 and H668 steels. Plate thickness of C711 steel could be reduced from 3.18 mm without scribing to 2. 20 mm after scribing of 16 mm. There is no apparent thickness reduction at lower flux densities; while the peak flux density is above 0.3 T, the shielding effect becomes apparent, and the thickness could be reduced from 2.28 mm without scribing to 1.70 mm with scribing spacing of 16 ram. Magnetizing process and its effect on variation of magnetic shielding were also analyzed.
基金This work is funded by the Magnetic Resonance Union of the Chinese Academy of Sciences(Grant No.2021gzl002)the International Partnership Program of Chinese Academy of Sciences(Grant No.182111KYSB20210014)+1 种基金the National Science Foundation of China(Grant No.52293423,Grant No.52277031)the Research and Development of Key Technologies and Equipment for Major Science and Technology Infrastructure of Development and Reform Commission of Shenzhen Municipality,China(Grant No.ZDKJ20190305002).
文摘The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.
文摘Ni layers were deposited on the two sides of pure Fe substrate by using electroplating to form Ni/Fe/Ni diffusion couple. After diffusion heat treatment, Fe-Ni laminated composite was obtained with Fe-Ni alloy/Fe/Fe-Ni alloy structure. The results indicate that the Fe-Ni layers combine well with the substrate and the Fe-Ni/Fe interface presents an interlocking microstructure with small-size grains. The concentration of element Ni in the Fe-Ni layer decreases from surface to interior exhibiting a gradient distribution. Geomagnetic shielding factor (SF) of Fe-Ni laminated composite can reach as high as 22.6, which is about seven times of that of pure Fe substrate. Mathematical equation of SF for laminated structure was derived according to magnetic circuit and resistance theory. The theoretical expression reveals that parameters such as the thickness and magnetic permeability of the shield material play an important role in the magnetic shielding behavior and the theoretical calculation results of SF coincide well with our experimental values.
基金Supported by 973 Program(2010CB833002)Strategic Priority Research Program on Space Science of Chinese Academy of Science(XDA04040202-4)
文摘The magnetic characteristics of R5610A-01 photomultiplier tubes are studied in this paper. The experimental data shows that the gain of R5610A-01 loses about 53% when the magnetic field is 3 Gs along its +X axis. A cylinder of one-layer permalloy strip is able to reduce the effect of a 3 Gs magnetic field on the PMT gain to less than 1%.
基金supported by National Natural Science Foundation of China (No. 10675040)College Scientific Research and Development Fund (No. C122009015) of China
文摘Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.
基金funded by National Natural Science Foundation of China (Nos. 52076054 and 51736003)Civil Aerospace Technology Pre-research Project (No. D03015)Defense Industrial Technology Development Program (No. JCKY2019603B005)。
文摘To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61227902,61374210,and 61121003)
文摘A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam's direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell's transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium's D1 line. Furthermore, the residual magnetic fields are measured with σ+- and σ--polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm.
文摘Motivated by ITER(the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the finite element method with a nonlinear magnetization curve. The geometrical aspects of shielding performance are identified and corresponding suggestions for application are provided. Among them, the effects of the edge and cover thickness have not been mentioned elsewhere to our knowledge.
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000。
文摘Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.
文摘The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functionality. These include mitigating interference from magnetic fields and vibrations, which are critical for maintaining the precision and accuracy of the instruments used. This study aims to offer enhanced project management strategies and detailed construction solutions that address the environmental and technical needs specific to electron microscopy labs, thereby facilitating effective lab operations and extending the lifecycle of high-end precision instruments. Case studies of existing laboratory constructions, onsite investigations, and comprehensive reviews of the technical and environmental requirements provide the basis for a best practice for constructing sophisticated electron microscopy labs. The approach integrates both pre-construction planning and post-construction adjustments to create optimal operational environments. The findings suggest that successful lab constructions are those that incorporate thorough onsite assessments, strategic location choices, and the use of advanced construction materials and techniques specifically designed to counteract environmental challenges like magnetic and vibration interferences. Actionable guidelines for both planning and executing the construction of electron microscope labs highlighted in this tutorial are intended as an important resource to troubleshoot or upgrade existing lab facilities and to consult in preparation of future lab construction projects.
基金the National Key R&D Program of China(Grant No.2016YFF0200202)the Maintenance and Reformation Program for the Major Science and Technology Fundamental Devices of the Chinese Academy of Sciences(Grant No.DSS-WXGZ-2020-0005)the Foundation for Western Young Scholars,China(Grant No.XAB2018A06)。
文摘Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.
文摘The magnetic mirror field caused by a pair of mild steel circular in 15mm diameter, 2 mm thickness placed outside the discharge chamber can increase the atom ion ratio of nitrogen from 66% to 81 %, and the heating filament current can be decreased from 130 A down to 100 A for a new filament of 2 mm in diameter. The Mo shield cylinders in 14mm diameter put behind the reflect cathode surrounding the BN insulator prevent the metallization of BN insulators, and result in increasing the stability of arc discharge till to the end of filament working life. Because it restricts the deposition of the sputtered W and Mo atoms on the BN insulator, and maintains a high resistance of 70 Mad between the anode and cathode. The combination of cathode shield cylinder and forming magnetic mirror field improves the running property, life of the Freeman source being about 40 h.
基金supported by Shenzhen Basic Research Project under Grant No.JCYJ20170307153851342。
文摘Wireless Power Transfer(WPT)charging systems can cause eddy loss on the steel part and the chassis of an Electric Vehicle(EV).To study different shielding structures’influence on the transmission efficiency of a WPT system,boundary conditions and assumptions of the WPT model in a quasistationary electromagnetic field were established and a finite element method(FEM)was adopted.The shielding effectiveness of ferrite plate and annular aluminum plate were investigated as well as their effects on the coupling coefficient of WPT.It was found that,the setting of ferrite core enhanced the transmission field strength,improved the coupling between two coils,and increased transmit power as well as the actual eddy loss.The actual necessary shielding-area was not confined into the samesize area but distributed around the edge of the ferrite.By arranging specialized size annular aluminum plates between the chassis and ferrite core,the eddy loss can be effectively shielded and an optimal transmission efficiency can breached with an acceptable coupling coefficient decrease.The optimized ferrite bar structure and its EMC characteristics were also studied.It was also found that with equal volume,the optimized ferrite bar structure had better performance in EMC and coupling enhancement than the full ferrite plate.
基金Supported by National Natural Science Foundation of China (91026001)
文摘This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS). The magnetic field is provided by one main, two bucking and four racetrack coils. The main coil produces a central field of up to 7 T and the effective length is more than 140 mm, the two bucking coils can shield most of the fringe field, and the four racetrack superconducting coils produce the steering magnetic field. Its leakage field in the cavity zone is about 5 × 10^-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively. The quench calculations and protection system are also discussed.