期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Process Modeling of Ferrofluids Flow for Magnetic Targeting Drug Delivery
1
作者 LIU Handan WANG Shigang XU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期440-445,共6页
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther... Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application. 展开更多
关键词 magnetic targeting drug delivery FERROFLUIDS magnetic nano-particels process modeling HYDRODYNAMICS computational fluid dynamics(CFD) numerical simulation magnetic resonance imaging
下载PDF
Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery
2
作者 刘菡萏 徐威 +1 位作者 王石刚 柯遵纪 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第10期1341-1349,共9页
Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug... Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug delivery is a method of carrying drug-loaded magnetic nanoparticles to a target tissue target under the applied magnetic field. This method increases the drug concentration in the target while reducing the adverse side-effects. Although there have been some theoretical analyses for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel. A mathematical model is presented to describe the hydrodynamics of ferrofiuids as drug carriers flowing in a blood vessel under the applied magnetic field. In this model, magnetic force and asymmetrical force are added, and an angular momentum equation of magnetic nanoparticles in the applied magnetic field is modeled. Engineering approximations are achieved by retaining the physically most significant items in the model due to the mathematical complexity of the motion equations. Numerical simulations are performed to obtain better insight into the theoretical model with computational fluid dynamics. Simulation results demonstrate the important parameters leading to adequate drug delivery to the target site depending on the magnetic field intensity, which coincident with those of animal experiments. Results of the analysis provide important information and suggest strategies for improving delivery in clinical application. 展开更多
关键词 magnetic targeting drug delivery FERROFLUIDS magnetic nanoparticles hydrodynamic modeling CFD simulation
下载PDF
Magnetic nanoparticle-based cancer therapy 被引量:2
3
作者 余靓 黄冬雁 +2 位作者 Muhammad Zubair Yousaf 侯仰龙 高松 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期23-35,共13页
Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer... Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy.Recently,magnetic nanoparticles(MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy.Compared with traditional cancer therapy,magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way.In this review,we will discuss the recent progress in cancer therapies based on MNPs,mainly including magnetic hyperthermia,magnetic specific targeting,magnetically controlled drug delivery,magnetofection,and magnetic switches for controlling cell fate.Some recently developed strategies such as magnetic resonance imaging(MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed. 展开更多
关键词 magnetic nanoparticles cancer therapy hyperthermia drug delivery targeting magnetic reso-nance imaging
下载PDF
Sorafenib delivery nanoplatform based on superpara- magnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma 被引量:1
4
作者 Nicoletta Depalo Rosa Maria lacobazzi +13 位作者 Gianpiero Valente Ilaria Arduino Silvia Villa Fabio Canepa Valentino Laquintana Elisabetta Fanizza Marinella Striccoli Annalisa Cutrignelli Angela Lopedota Letizia Porcelli Amalia Azzariti Massimo Franco Maria Lucia Curri Nunzio Denora 《Nano Research》 SCIE EI CAS CSCD 2017年第7期2431-2448,共18页
Currently, sorafenib is the only systemic therapy capable of increasing overall survival of hepatocellular carcinoma patients. Unfortunately, its side effects, particularly its overall toxicity, limit the therapeutic ... Currently, sorafenib is the only systemic therapy capable of increasing overall survival of hepatocellular carcinoma patients. Unfortunately, its side effects, particularly its overall toxicity, limit the therapeutic response that can be achieved. Superparamagnetic iron oxide nanoparticles (SPIONs) are very attractive for drug delivery because they can be targeted to specific sites in the body through application of a magnetic field, thus improving intratumoral accumulation and reducing adverse effects. Here, nanoformulations based on polyethylene glycol modified phospholipid micelles, loaded with both SPIONs and sorafenib, were successfully prepared and thoroughly investigated by complementary techniques. This nanovector system provided effective drug delivery, had an average hydrodynamic diameter of about 125 nm, had good stability in aqueous medium, and allowed controlled drug loading. Magnetic analysis allowed accurate determination of the amount of SPIONs embedded in each micelle. An in vitro system was designed to test whether the SPION micelles can be efficiently held using a magnetic field under typical flow conditions found in the human liver. Human hepatocellular carcinoma (HepG2) cells were selected as an in vitro system to evaluate tumor cell targeting efficacy of the superparamagnetic micelles loaded with sorafenib. These experiments demonstrated that this delivery platform is able to enhance sorafenib's antitumor effectiveness by magnetic targeting. The magnetic nanovectors described here represent promising candidates for targeting specific hepatic tumor sites, where selective release of sorafenib can improve its efficacy and safety profile. 展开更多
关键词 superparamagnetic ironoxide nanoparticles poly(ethylene glycol) (PEG)-modified phospholipidmicelles drug delivery magnetic targeting hepatocellular carcinoma sorafenib
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部