The influence of Dzyaloshinskii-Moriya interaction(DMI)on the vortex reversal driven by an out-of-plane spin-polarized current in an off-centered nanocontact structure is investigated.The simulation results show that ...The influence of Dzyaloshinskii-Moriya interaction(DMI)on the vortex reversal driven by an out-of-plane spin-polarized current in an off-centered nanocontact structure is investigated.The simulation results show that DMI plays a vital role in vortex core reversal,including reversal current density,reversal velocity and reversal time.Under the influence of DMI,magnetic vortices still reverse polarity through the nucleation and annihilation of vortex and anti-vortex,with some peculiar characteristics.These results open up new possibilities for the application of magnetic vortex-based spin-transfer encryption nano-storage.展开更多
Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eig...Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.展开更多
Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simu...Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simulations are employed to study the vortex core switching behaviour excited by a short in-plane Gaussian current pulse. We find that both the switching mechanism and the switching time are not sensitive to changes in the phenomenological parameters of spin-torque nonadiabaticity and Gilbert damping. The switching time, however, strongly depends on the current strength. In addition, we have theoretically predicted the parameter range of current pulses to achieve a single switching event.展开更多
A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters w...A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).展开更多
The complex permeability of the artificial spin ice array at different magnetic states is calculated using the micromagnetic simulation method. It is observed that the permeability spectra are dependent on the magneti...The complex permeability of the artificial spin ice array at different magnetic states is calculated using the micromagnetic simulation method. It is observed that the permeability spectra are dependent on the magnetization distributions of the array. The dependence of the permeability spectrum on the applied magnetic field strength and on the spacing gap between the neighboring elements is also investigated. Depending on the initial magnetization saturating direction, the permeability spectrum exhibits different sensitivity to the strength of the external applied magnetic field and to the spacing distance between the comprising elements of the artificial spin ice array.展开更多
We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an app...We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.展开更多
We present an overview in the understanding of spin-transfer torque(STT) induced magnetization dynamics in spintorque nano-oscillator(STNO) devices. The STNO contains an in-plane(IP) magnetized free layer and an out-o...We present an overview in the understanding of spin-transfer torque(STT) induced magnetization dynamics in spintorque nano-oscillator(STNO) devices. The STNO contains an in-plane(IP) magnetized free layer and an out-of-plane(OP) magnetized spin polarizing layer. After a brief introduction, we first use mesoscopic micromagnetic simulations,which are based on the Landau–Lifshitz–Gilbert equation including the STT effect, to specify how a spin-torque term may tune the magnetization precession orbits of the free layer, showing that the oscillator frequency is proportional to the current density and the z-component of the free layer magnetization. Next, we propose a pendulum-like model within the macrospin approximation to describe the dynamic properties in such type of STNOs. After that, we further show the procession dynamics of the STNOs excited by IP and OP dual spin-polarizers. Both the numerical simulations and analytical theory indicate that the precession frequency is linearly proportional to the spin-torque of the OP polarizer only and is irrelevant to the spin-torque of the IP polarizer. Finally, a promising approach of coordinate transformation from the laboratory frame to the rotation frame is introduced, by which the nonstationary OP magnetization precession process is therefore transformed into the stationary process in the rotation frame. Through this method, a promising digital frequency shift-key modulation technique is presented, in which the magnetization precession can be well controlled at a given orbit as well as its precession frequency can be tuned with the co-action of spin polarized current and magnetic field(or electric field) pulses.展开更多
The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations.Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The ed...The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations.Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The edge mode localized in the two ends of the element can be effectively tuned by the element shape. Its frequency increases rapidly with the tapered parameter h and its localized area gradually expands toward the element center, and it finally merges into the fundamental mode at a critical tapered parameter h0. For nanoelements with h 〉 h0, the edge mode is completely suppressed. The standing spin-wave modes mainly in the internal area of the element are less affected by the element shape.The shifts of their frequencies are small and they display different tendencies. The evolution of the spin-wave modes with the element shape is explained by considering the change of the internal field.展开更多
Magnetization orientation of a nanoscale ferromagnet can be manipulated by an electric current via spin-transfer torque(STT) effect,which holds great promise in the applications of non-volatile magnetic random access ...Magnetization orientation of a nanoscale ferromagnet can be manipulated by an electric current via spin-transfer torque(STT) effect,which holds great promise in the applications of non-volatile magnetic random access memory(MRAM) and spintorque oscillators.We review the fundamental mechanism and experimental progress of the STT effect.Then,different formula of STT torque has been classified,which can be added to the conventional Landau-Lifshitz-Gilbert equation.After that,we show some simulation results that mainly concern the STT-driven vortex dynamics,magnetization oscillations excited by a perpendicular polarizer,and the detail dynamics by in-plane and out-of-plane dual spin polarizers.展开更多
Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a sim...Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774045 and 22078124)the Program for the Development of Science and Technology of Jilin Province,China(Grant No.20210101410JC).
文摘The influence of Dzyaloshinskii-Moriya interaction(DMI)on the vortex reversal driven by an out-of-plane spin-polarized current in an off-centered nanocontact structure is investigated.The simulation results show that DMI plays a vital role in vortex core reversal,including reversal current density,reversal velocity and reversal time.Under the influence of DMI,magnetic vortices still reverse polarity through the nucleation and annihilation of vortex and anti-vortex,with some peculiar characteristics.These results open up new possibilities for the application of magnetic vortex-based spin-transfer encryption nano-storage.
基金Project supported by the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province,China(Grant No.JJKH20191007KJ)the Program for Development of Science and Technology of Siping City,China(Grant No.2016063)
文摘Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50871075 and 10974142)the Natural Science Foundation of Shanghai,China (Grant No. 08ZR1420500)
文摘Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simulations are employed to study the vortex core switching behaviour excited by a short in-plane Gaussian current pulse. We find that both the switching mechanism and the switching time are not sensitive to changes in the phenomenological parameters of spin-torque nonadiabaticity and Gilbert damping. The switching time, however, strongly depends on the current strength. In addition, we have theoretically predicted the parameter range of current pulses to achieve a single switching event.
文摘A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).
文摘The complex permeability of the artificial spin ice array at different magnetic states is calculated using the micromagnetic simulation method. It is observed that the permeability spectra are dependent on the magnetization distributions of the array. The dependence of the permeability spectrum on the applied magnetic field strength and on the spacing gap between the neighboring elements is also investigated. Depending on the initial magnetization saturating direction, the permeability spectrum exhibits different sensitivity to the strength of the external applied magnetic field and to the spacing distance between the comprising elements of the artificial spin ice array.
基金supported by the China Postdoctoral Science Foundation(Grant No.2013M541286)the Science and Technology Planning Project of Jilin Province,China(Grant Nos.20140520109JH and 20150414003GH)the “Twelfth Five year” Scientific and Technological Research Project of Department of Education of Jilin Province,China
文摘We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.
基金supported by the National Basic Research Program of China(Grant No.2015CB921501)the National Natural Science Foundation of China(Grant Nos.11774260,51671057,and 11874120)
文摘We present an overview in the understanding of spin-transfer torque(STT) induced magnetization dynamics in spintorque nano-oscillator(STNO) devices. The STNO contains an in-plane(IP) magnetized free layer and an out-of-plane(OP) magnetized spin polarizing layer. After a brief introduction, we first use mesoscopic micromagnetic simulations,which are based on the Landau–Lifshitz–Gilbert equation including the STT effect, to specify how a spin-torque term may tune the magnetization precession orbits of the free layer, showing that the oscillator frequency is proportional to the current density and the z-component of the free layer magnetization. Next, we propose a pendulum-like model within the macrospin approximation to describe the dynamic properties in such type of STNOs. After that, we further show the procession dynamics of the STNOs excited by IP and OP dual spin-polarizers. Both the numerical simulations and analytical theory indicate that the precession frequency is linearly proportional to the spin-torque of the OP polarizer only and is irrelevant to the spin-torque of the IP polarizer. Finally, a promising approach of coordinate transformation from the laboratory frame to the rotation frame is introduced, by which the nonstationary OP magnetization precession process is therefore transformed into the stationary process in the rotation frame. Through this method, a promising digital frequency shift-key modulation technique is presented, in which the magnetization precession can be well controlled at a given orbit as well as its precession frequency can be tuned with the co-action of spin polarized current and magnetic field(or electric field) pulses.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374373)the Doctoral Fund of Ministry of Education of China(Grant No.20120162110020)+1 种基金the Natural Science Foundation of Hunan Province of China(Grant No.13JJ2004)the Science and Technology Planning of Yiyang City of Hunan Province of China(Grant No.2014JZ54)
文摘The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations.Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The edge mode localized in the two ends of the element can be effectively tuned by the element shape. Its frequency increases rapidly with the tapered parameter h and its localized area gradually expands toward the element center, and it finally merges into the fundamental mode at a critical tapered parameter h0. For nanoelements with h 〉 h0, the edge mode is completely suppressed. The standing spin-wave modes mainly in the internal area of the element are less affected by the element shape.The shifts of their frequencies are small and they display different tendencies. The evolution of the spin-wave modes with the element shape is explained by considering the change of the internal field.
基金support by the National Natural Science Foundation of China(Grant Nos.11074046,11274241,51171047 and 51222103)the Shuguang Program of Shanghai Education Commission(Grant No.09SG22)the New Century Educational Talents Plan of Chinese Education Ministry(Grant No.NCET-10-0603)
文摘Magnetization orientation of a nanoscale ferromagnet can be manipulated by an electric current via spin-transfer torque(STT) effect,which holds great promise in the applications of non-volatile magnetic random access memory(MRAM) and spintorque oscillators.We review the fundamental mechanism and experimental progress of the STT effect.Then,different formula of STT torque has been classified,which can be added to the conventional Landau-Lifshitz-Gilbert equation.After that,we show some simulation results that mainly concern the STT-driven vortex dynamics,magnetization oscillations excited by a perpendicular polarizer,and the detail dynamics by in-plane and out-of-plane dual spin polarizers.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704191)the Jiangsu Specially-Appointed Professor,the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20171026)the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.XYDXX-038)
文摘Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.