Lorentz transmission electron microscopy(TEM) is a powerful tool to study the crystal structures and magnetic domain structures in correlation with novel physical properties. Nanometric topological magnetic configur...Lorentz transmission electron microscopy(TEM) is a powerful tool to study the crystal structures and magnetic domain structures in correlation with novel physical properties. Nanometric topological magnetic configurations such as vortices, bubbles, and skyrmions have received enormous attention from the viewpoint of both fundamental science and potential applications in magnetic logic and memory devices, in which understanding the physical properties of magnetic nanodomains is essential. In this review article, several magnetic imaging methods in Lorentz TEM including the Fresnel and Foucault modes, electron holography, and differential phase contrast(DPC) techniques are discussed, where the novel properties of topological magnetic domains are well addressed. In addition, in situ Lorentz TEM demonstrates that the topological domains can be efficiently manipulated by electric currents, magnetic fields, and temperatures, exhibiting novel phenomena under external fields, which advances the development of topological nanodomain-based spintronics.展开更多
The aim of this paper is to present a rigorous mathematical proof of the dynamical laws for the topological solitons( magnetic vortices) in ferromagnets and anti-ferromagnets. It is achieved through the conservation l...The aim of this paper is to present a rigorous mathematical proof of the dynamical laws for the topological solitons( magnetic vortices) in ferromagnets and anti-ferromagnets. It is achieved through the conservation laws for the topological vorticity and the weak convergence methods.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0700902)the National Natural Science Foundation of China(Grant Nos.51590880,11674379,51431009,11674373,and 51625101)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015004)
文摘Lorentz transmission electron microscopy(TEM) is a powerful tool to study the crystal structures and magnetic domain structures in correlation with novel physical properties. Nanometric topological magnetic configurations such as vortices, bubbles, and skyrmions have received enormous attention from the viewpoint of both fundamental science and potential applications in magnetic logic and memory devices, in which understanding the physical properties of magnetic nanodomains is essential. In this review article, several magnetic imaging methods in Lorentz TEM including the Fresnel and Foucault modes, electron holography, and differential phase contrast(DPC) techniques are discussed, where the novel properties of topological magnetic domains are well addressed. In addition, in situ Lorentz TEM demonstrates that the topological domains can be efficiently manipulated by electric currents, magnetic fields, and temperatures, exhibiting novel phenomena under external fields, which advances the development of topological nanodomain-based spintronics.
文摘The aim of this paper is to present a rigorous mathematical proof of the dynamical laws for the topological solitons( magnetic vortices) in ferromagnets and anti-ferromagnets. It is achieved through the conservation laws for the topological vorticity and the weak convergence methods.