This paper presents the development and assessment of two low-cost, travelling wave, thermoacoustic generators operating by waste heat energy from cooking stove. One powered by waste heat from a propane-driven stove, ...This paper presents the development and assessment of two low-cost, travelling wave, thermoacoustic generators operating by waste heat energy from cooking stove. One powered by waste heat from a propane-driven stove, the other powered by waste heat from a wood-burning stove. The propane-driven thermoacoustic generator was successfully demonstrated to produce approximately 15 watts of electricity using a commercial audio loudspeaker. The wood-burning thermoacoustic generator was successfully constructed and tested to generate a maximum of 22.7 watts of electricity under a pressurised condition. The latter has a high potential to be used by over 1.5 billion people in rural communities for applications such as LED lighting, charging mobile phones or charging a 12V battery. A comprehensive power assessment of the propane-driving generator as well as the development and performance assessment of the wood-burning generator are described throughout this article.展开更多
Mixed convection of heat and mass transfer in an isosceles trapezoidal cavity has been studied numerically. Constant heat flux is imposed through four outlets and the grid is insulated. The inclined walls are maintain...Mixed convection of heat and mass transfer in an isosceles trapezoidal cavity has been studied numerically. Constant heat flux is imposed through four outlets and the grid is insulated. The inclined walls are maintained in natural convection while the lower horizontal wall is adiabatic. These conditions reflect the air draft zone of the ASUTO charcoal stove. The governing two-di- mensional flow equations have been solved by using the finite difference method and Thomas’s algorithm. The investigations are conducted for different values of Richardson (R<sub>i</sub>), Reynolds number (R<sub>e</sub>) and inclination angles of sidewalls. The results are presented in terms of streamlines, isotherms, moisture contours. It was found that for Reynolds number (R<sub>e</sub>) equal to 100, the flow pattern is strongly dependent on the inclination angle and Richardson number. Thus, for high Richardson number (R<sub>i</sub>) values (10, 100), the dominance of natural convection over the flow structure decreases with the decreasing of the inclination angle of sidewalls of the cavity. For R<sub>i</sub> = 1, an optimum air draft corresponds to an inclination angle in the vicinity of 22° while for R<sub>i</sub> = 10 or 100 (in dominance of natural convection), the optimum inclination angle for air draft is in the vicinity of 15°.展开更多
Straw pellets are widely promoted and expected to be a cleaner alternative fuel to unprocessed crop residues and rawcoal in rural China.However,the effectiveness of these dissemination programs is not well evaluated.I...Straw pellets are widely promoted and expected to be a cleaner alternative fuel to unprocessed crop residues and rawcoal in rural China.However,the effectiveness of these dissemination programs is not well evaluated.In this field study,emission characteristics of burning strawpellets,rawcoal,and unprocessed corn cobs in heating stoveswere investigated in a pilot village in Northeast China.Emission measurements covering the whole combustion cycle(ignition,flaming,and smoldering phases)shows the promotion of improved heating stoves and straw pellets could reduce pollutant emissions(e.g.,SO_(2) and CO),but increase NO_(X) and PM_(2.5) emissions compared to the initial stove-fuel use pattern in the studied area.There is a significant variance in emission characteristics between different combustion phases.The normalized emission concentrations of the different stove-fuel combinations were higher than the limits in the Chinese national standard for heating stoves,indicating that the standard is not met for real-world emissions.Coal consumption was lower than official data.Household surveys were conducted to identify the barriers to fuel and stove access associated with existing promotion strategies,management,and policies.The pilot program was of the typical“subsidy-and-policy-dependence”pattern and was unlikely to be implemented on a large scale.Technological innovation,operational optimization,and proper policies considering the local socioeconomic factors are needed to sustain the promotion of biomass straw pellets and stoves.展开更多
文摘This paper presents the development and assessment of two low-cost, travelling wave, thermoacoustic generators operating by waste heat energy from cooking stove. One powered by waste heat from a propane-driven stove, the other powered by waste heat from a wood-burning stove. The propane-driven thermoacoustic generator was successfully demonstrated to produce approximately 15 watts of electricity using a commercial audio loudspeaker. The wood-burning thermoacoustic generator was successfully constructed and tested to generate a maximum of 22.7 watts of electricity under a pressurised condition. The latter has a high potential to be used by over 1.5 billion people in rural communities for applications such as LED lighting, charging mobile phones or charging a 12V battery. A comprehensive power assessment of the propane-driving generator as well as the development and performance assessment of the wood-burning generator are described throughout this article.
文摘Mixed convection of heat and mass transfer in an isosceles trapezoidal cavity has been studied numerically. Constant heat flux is imposed through four outlets and the grid is insulated. The inclined walls are maintained in natural convection while the lower horizontal wall is adiabatic. These conditions reflect the air draft zone of the ASUTO charcoal stove. The governing two-di- mensional flow equations have been solved by using the finite difference method and Thomas’s algorithm. The investigations are conducted for different values of Richardson (R<sub>i</sub>), Reynolds number (R<sub>e</sub>) and inclination angles of sidewalls. The results are presented in terms of streamlines, isotherms, moisture contours. It was found that for Reynolds number (R<sub>e</sub>) equal to 100, the flow pattern is strongly dependent on the inclination angle and Richardson number. Thus, for high Richardson number (R<sub>i</sub>) values (10, 100), the dominance of natural convection over the flow structure decreases with the decreasing of the inclination angle of sidewalls of the cavity. For R<sub>i</sub> = 1, an optimum air draft corresponds to an inclination angle in the vicinity of 22° while for R<sub>i</sub> = 10 or 100 (in dominance of natural convection), the optimum inclination angle for air draft is in the vicinity of 15°.
基金supported by the Ministry of Science and Technology of China(No.2017YFC0211400)and the China Office of Clean Air Asia.
文摘Straw pellets are widely promoted and expected to be a cleaner alternative fuel to unprocessed crop residues and rawcoal in rural China.However,the effectiveness of these dissemination programs is not well evaluated.In this field study,emission characteristics of burning strawpellets,rawcoal,and unprocessed corn cobs in heating stoveswere investigated in a pilot village in Northeast China.Emission measurements covering the whole combustion cycle(ignition,flaming,and smoldering phases)shows the promotion of improved heating stoves and straw pellets could reduce pollutant emissions(e.g.,SO_(2) and CO),but increase NO_(X) and PM_(2.5) emissions compared to the initial stove-fuel use pattern in the studied area.There is a significant variance in emission characteristics between different combustion phases.The normalized emission concentrations of the different stove-fuel combinations were higher than the limits in the Chinese national standard for heating stoves,indicating that the standard is not met for real-world emissions.Coal consumption was lower than official data.Household surveys were conducted to identify the barriers to fuel and stove access associated with existing promotion strategies,management,and policies.The pilot program was of the typical“subsidy-and-policy-dependence”pattern and was unlikely to be implemented on a large scale.Technological innovation,operational optimization,and proper policies considering the local socioeconomic factors are needed to sustain the promotion of biomass straw pellets and stoves.