We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field. We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field, for any orientation of ...We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field. We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field, for any orientation of electron spin and for any polarization of the emitted radiation. Also, we obtain the transition rates for any value of the initial electron's parallel momentum. For very strong magnetic fields, transitions to the ground state predominate. Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained, which confirm previous results by Latal. Transition widths are calculated for different electron spin orientations and different polarizations of radiation. We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation. Additionally we get, for the non-relativistic approximation, the transition rates for any polarization of radiation. As an application, the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53, which has multiple observable cyclotron lines, taking into account gravitational redshift. The most probable polarization is ε(2).展开更多
We propose that grand minima in solar activity are caused by simultane- ous fluctuations in the meridional circulation and the Babcock-Leighton mechanism for the poloidal field generation in the flux transport dynamo ...We propose that grand minima in solar activity are caused by simultane- ous fluctuations in the meridional circulation and the Babcock-Leighton mechanism for the poloidal field generation in the flux transport dynamo model. We present the following results: (a) fluctuations in the meridional circulation are more effective in producing grand minima; (b) both sudden and gradual initiations of grand minima are possible; (c) distributions of durations and waiting times between grand minima seem to be exponential; (d) the coherence time of the meridional circulation has an effect on the number and the average duration of grand minima, with a coherence time of about 30 yr being consistent with observational data. We also study the occurrence of grand maxima and find that the distributions of durations and waiting times between grand maxima are also exponential, like the grand minima. Finally we address the question of whether the Babcock-Leighton mechanism can be operative during grand minima when there are no sunspots. We show that an a-effect restricted to the upper portions of the convection zone can pull the dynamo out of the grand minima and can match various observational requirements if the amplitude of this a-effect is suitably fine-tuned.展开更多
In many cases, high-resolution nuclear magnetic resonance (NMR) spectra are virtually impossible to obtain by con- ventional nuclear magnetic resonance methods because of inhomogeneity of magnetic field and inherent...In many cases, high-resolution nuclear magnetic resonance (NMR) spectra are virtually impossible to obtain by con- ventional nuclear magnetic resonance methods because of inhomogeneity of magnetic field and inherent heterogeneity of sample. Although conventional intramolecular zero-quantum coherence (ZQC) can be used to obtain high-resolution spectrum in inhomogeneous field, the acquisition takes rather long time. In this paper, a spatially encoded intramolecular ZQC technique is proposed to fast acquire high-resolution NMR spectrum in inhomogeneous field. For the first time, the gradient-driven decoding technique is employed to selectively acquire intramolecular ZQC signals. Theoretical analyses and experimental observations demonstrate that high-resolution NMR spectral information can be retrieved within several scans even when the field inhomogeneity is severe enough to erase most spectral information. This work provides a new way to enhance the acquisition efficiency of high-resolution intramolecular ZQC spectroscopy in inhomogeneous fields.展开更多
The spin period variations and hard X-ray spectral properties of the Be/Xray pulsar GRO J1008-57 are studied with INTEGRAL observations during two out- bursts in 2004 June and 2009 March. The pulsation periods of -93....The spin period variations and hard X-ray spectral properties of the Be/Xray pulsar GRO J1008-57 are studied with INTEGRAL observations during two out- bursts in 2004 June and 2009 March. The pulsation periods of -93.66 s in 2004 and - 93.73 s in 2009 are determined. Pulse profiles of GRO J1008-57 during out- bursts are strongly energy dependent with a double-peaked profile from 3-7 keV and a single-peaked profile in hard X-rays above 7 keV. Combined with previous measure- ments, we find that GRO J1008-57 has undergone a spin-down trend from 1993 - 2009 with a rate of - 4.1 × 10^-5 s d^-1, and could have changed into a spin-up trend after 2009. We find a relatively soft spectrum in the early phase of the 2009 outburst with cutoff energy ~ 13keV. Above a hard X-ray flux of - 10^-9 erg cm^-2 s^-1, the spectra of GRO J1008-57 during outbursts need an enhanced hydrogen absorption with column density ~ 6 x 1022 cm-2. The observed dip-like pulse profile of GRO J1008-57 in soft X-ray bands could be caused by this intrinsic absorption. Around the outburst peaks, a possible cyclotron resonance scattering feature at - 74 keV is detected in the spectra of GRO J1008-57 which is consistent with the feature that was reported in MAXI/GSC observations, making the source a neutron star with the highest known magnetic field (- 6.6 × 10^12 G) among accreting X-ray pulsars. This marginal feature is supported by the present detections in GRO J1008-57 following the correlation between the fundamental line energies and cutoff energies in accret- ing X-ray pulsars. Finally we discovered two modulation periods at - 124.38 d and 248.78d using RXTE/ASM light curves of GRO J1008-57. Two flare peaks ap- pearing in the folded light curve had different spectral properties. The normal outburst lasting 0,1 of an orbital phase had a hard spectrum and could not be significantly de- tected below 3 keV. The second flare lasting ten days showed a very soft spectrum without significant detections above 5 keV. GRO J1008-57 is a good candidate of an accreting system with an equatorial circumstellar disk around the companion star. The neutron star passing the disk of the Be star near periastron and apastron produces two X-ray flares. The soft spectral properties in the secondary flares still need further detailed studies with soft X-ray spectroscopy.展开更多
Taking the decoherence effect into account, the entanglement evolution of a two-qubit anisotropic Heisenberg XYZ chain in the presence of inhomogeneous magnetic field is investigated. The time evolution of concurrence...Taking the decoherence effect into account, the entanglement evolution of a two-qubit anisotropic Heisenberg XYZ chain in the presence of inhomogeneous magnetic field is investigated. The time evolution of concurrence is studied for the initial state cos θ|01) + sin θ|10) at zero temperature. The influences of inhomogeneous magnetic field, anisotropic parameter and decoherence on entanglement dynamic are addressed in detail, and a concurrence formula of the steady state is found. It is shown that the entanglement sudden death (ESD) and entanglement sudden birth (ESB) appear with the decoherence effect, and the stable concurrence depends on the uniform magnetic field B, anisotropic parameter △ and environment coupling strength γ, which is independent of different initial states and nonuniform magnetic field b.展开更多
A novel method was reported to measure the remnant magnetic field in Lorentz mode in a FEI Tecnai F20 transmission electron microscope equipped with a Lorentz lens. The movement of the circle Bloch line of the cross-t...A novel method was reported to measure the remnant magnetic field in Lorentz mode in a FEI Tecnai F20 transmission electron microscope equipped with a Lorentz lens. The movement of the circle Bloch line of the cross-tie wall in Permalloy is used to measure the remnant magnetic field by tilting the specimen and adjusting the objective lens current. The remnant magnetic field is estimated to be about 17 Oe, in a direction opposite to that of the objective lens magnetic field. The remnant magnetic field can be compensated by adjusting the value of the objective lens current.展开更多
This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for stud...This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.展开更多
The purpose of this paper is to study the magnetomechanicalcharacteristic of a microsensor which is composed of a cantileveredbeam-plate with ferromagnetic films in order to measure the magneticfield from the deformat...The purpose of this paper is to study the magnetomechanicalcharacteristic of a microsensor which is composed of a cantileveredbeam-plate with ferromagnetic films in order to measure the magneticfield from the deformation of plate when the microsensor is locatedin the magnetic field. To this end, a nu- merical approach made up ofthe finite element method for magnetic field and the finitedifference method for deflection of the microsensor is proposed toperform the numerical analysis of deflection under magnetoelasticinteraction. Some quantitative results of a case study for themagnetoelastic characteristic between the mag- netic field anddeflection of the microsensor in the magnetic field are given. Theresults show that this mi- crosensor can be used not only to measurethe magnitude of magnetic intensity, but also to possibly monitor thedirection of the vector of the magnetic field.展开更多
This study investigates the unsteady natural convection and entropy generation under the effects of magnetic field and baffles inside a nanofluid filled E-shaped enclosure.The nanofluid flow is driven by time-varying ...This study investigates the unsteady natural convection and entropy generation under the effects of magnetic field and baffles inside a nanofluid filled E-shaped enclosure.The nanofluid flow is driven by time-varying sidewall temperature and is partitioned by baffles.Multiple factors are discussed,including the enclosure aspect ratio(0.2≤AR≤0.7),nanofluid volume fractions(0≤φ≤0.1),Hartmann numbers(0≤Ha≤80),frequency of time-varying side wall temperature(0.01≤ω≤0.1),baffle locations(0≤d≤0.4)and length(0≤l≤0.4).An economic analysis is conducted to show the nanofluid cost of enhancing thermal transfer and reducing entropy generation.The modelling results show that increasing aspect ratio and nanofluid volume fraction enhance the thermal transfer behavior,while the magnetic field suppresses the nanofluid natural convection.Total entropy generation monotonically decreases with the increasing nanofluid volume fraction and Hartmann number.Installing baffles into horizontal walls can boost the thermal transfer behavior and decrease the total entropy generation.展开更多
The present study examines the effect of induced magnetic field and convectiveboundary condition on magnetohydrodynamic(MHD)stagnation point flow and heat transfer dueto upper-convected Maxwell fluid over a stretching...The present study examines the effect of induced magnetic field and convectiveboundary condition on magnetohydrodynamic(MHD)stagnation point flow and heat transfer dueto upper-convected Maxwell fluid over a stretching sheet in the presence of nanoparticles.Boundary layer theory is used to simplify the equation of motion,induced magnetic field,energyand concentration which results in four coupled non-linear ordinary differential equations.Thestudy takes into account the effect of Brownian motion and thermophoresis parameters.Thegoverning equations and their associated boundary conditions are initially cast into dimensionlessfonm by similarity variables.The resulting system of equations is then solved numerically usingfourth order Runge-Kutta-Fehlberg method along with shooting technique.The solution for thegoverning equations depends on parameters such as,magnetic,velocity ratio parameter B,Biotnumber Bi,Prandtl number Pr,Lewis number Le,Brownian motion Nb,reciprocal of magnetic Prandtl number A,the thermophoresis parameter Nt,and Maxwell parameter β.The numerical results are obtained for velocity,temperature,induced magnetic field andconcentration profiles as well as skin friction coefficient,the local Nusselt number andSherwood number.The results indicate that the skin friction coefficient,the local Nusseltnumber and Sherwood number decrease with an increase in B and M parameters.Moreover,local Sherwood number-φ'(O)decreases with an increase in convective parameter Bi,but the local Nusselt number-φ'(0)increases with an increase in Bi.The results are displayed both ingraphical and tabular form to illustrate the effect of the governing parameters on thedimensionless velocity,induced magnetic field,temperature and concentration.The numericalresults are compared and found to be in good agreement with the previously published resultson special cases of the problem.展开更多
基金support from MICIT(Ministry of Science and Technology)support from the Natural Sciences and Engineering Research Council of Canada
文摘We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field. We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field, for any orientation of electron spin and for any polarization of the emitted radiation. Also, we obtain the transition rates for any value of the initial electron's parallel momentum. For very strong magnetic fields, transitions to the ground state predominate. Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained, which confirm previous results by Latal. Transition widths are calculated for different electron spin orientations and different polarizations of radiation. We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation. Additionally we get, for the non-relativistic approximation, the transition rates for any polarization of radiation. As an application, the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53, which has multiple observable cyclotron lines, taking into account gravitational redshift. The most probable polarization is ε(2).
基金support through the JC Bose Fellowship(project No.SR/S2/JCB-61/2009)
文摘We propose that grand minima in solar activity are caused by simultane- ous fluctuations in the meridional circulation and the Babcock-Leighton mechanism for the poloidal field generation in the flux transport dynamo model. We present the following results: (a) fluctuations in the meridional circulation are more effective in producing grand minima; (b) both sudden and gradual initiations of grand minima are possible; (c) distributions of durations and waiting times between grand minima seem to be exponential; (d) the coherence time of the meridional circulation has an effect on the number and the average duration of grand minima, with a coherence time of about 30 yr being consistent with observational data. We also study the occurrence of grand maxima and find that the distributions of durations and waiting times between grand maxima are also exponential, like the grand minima. Finally we address the question of whether the Babcock-Leighton mechanism can be operative during grand minima when there are no sunspots. We show that an a-effect restricted to the upper portions of the convection zone can pull the dynamo out of the grand minima and can match various observational requirements if the amplitude of this a-effect is suitably fine-tuned.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275161 and 11105114)
文摘In many cases, high-resolution nuclear magnetic resonance (NMR) spectra are virtually impossible to obtain by con- ventional nuclear magnetic resonance methods because of inhomogeneity of magnetic field and inherent heterogeneity of sample. Although conventional intramolecular zero-quantum coherence (ZQC) can be used to obtain high-resolution spectrum in inhomogeneous field, the acquisition takes rather long time. In this paper, a spatially encoded intramolecular ZQC technique is proposed to fast acquire high-resolution NMR spectrum in inhomogeneous field. For the first time, the gradient-driven decoding technique is employed to selectively acquire intramolecular ZQC signals. Theoretical analyses and experimental observations demonstrate that high-resolution NMR spectral information can be retrieved within several scans even when the field inhomogeneity is severe enough to erase most spectral information. This work provides a new way to enhance the acquisition efficiency of high-resolution intramolecular ZQC spectroscopy in inhomogeneous fields.
基金Supported by the National Natural Science Foundation of China
文摘The spin period variations and hard X-ray spectral properties of the Be/Xray pulsar GRO J1008-57 are studied with INTEGRAL observations during two out- bursts in 2004 June and 2009 March. The pulsation periods of -93.66 s in 2004 and - 93.73 s in 2009 are determined. Pulse profiles of GRO J1008-57 during out- bursts are strongly energy dependent with a double-peaked profile from 3-7 keV and a single-peaked profile in hard X-rays above 7 keV. Combined with previous measure- ments, we find that GRO J1008-57 has undergone a spin-down trend from 1993 - 2009 with a rate of - 4.1 × 10^-5 s d^-1, and could have changed into a spin-up trend after 2009. We find a relatively soft spectrum in the early phase of the 2009 outburst with cutoff energy ~ 13keV. Above a hard X-ray flux of - 10^-9 erg cm^-2 s^-1, the spectra of GRO J1008-57 during outbursts need an enhanced hydrogen absorption with column density ~ 6 x 1022 cm-2. The observed dip-like pulse profile of GRO J1008-57 in soft X-ray bands could be caused by this intrinsic absorption. Around the outburst peaks, a possible cyclotron resonance scattering feature at - 74 keV is detected in the spectra of GRO J1008-57 which is consistent with the feature that was reported in MAXI/GSC observations, making the source a neutron star with the highest known magnetic field (- 6.6 × 10^12 G) among accreting X-ray pulsars. This marginal feature is supported by the present detections in GRO J1008-57 following the correlation between the fundamental line energies and cutoff energies in accret- ing X-ray pulsars. Finally we discovered two modulation periods at - 124.38 d and 248.78d using RXTE/ASM light curves of GRO J1008-57. Two flare peaks ap- pearing in the folded light curve had different spectral properties. The normal outburst lasting 0,1 of an orbital phase had a hard spectrum and could not be significantly de- tected below 3 keV. The second flare lasting ten days showed a very soft spectrum without significant detections above 5 keV. GRO J1008-57 is a good candidate of an accreting system with an equatorial circumstellar disk around the companion star. The neutron star passing the disk of the Be star near periastron and apastron produces two X-ray flares. The soft spectral properties in the secondary flares still need further detailed studies with soft X-ray spectroscopy.
基金Supported by National Natural Science Foundation of China under Grant No.10904033Natural Science Foundation of Hubei Province under Grant No.2009CDA145+1 种基金Educational Commission of Hubei Province under Grant No.D20092204Natural Science Foundation of Hubei Normal University under Grant No.2007D21
文摘Taking the decoherence effect into account, the entanglement evolution of a two-qubit anisotropic Heisenberg XYZ chain in the presence of inhomogeneous magnetic field is investigated. The time evolution of concurrence is studied for the initial state cos θ|01) + sin θ|10) at zero temperature. The influences of inhomogeneous magnetic field, anisotropic parameter and decoherence on entanglement dynamic are addressed in detail, and a concurrence formula of the steady state is found. It is shown that the entanglement sudden death (ESD) and entanglement sudden birth (ESB) appear with the decoherence effect, and the stable concurrence depends on the uniform magnetic field B, anisotropic parameter △ and environment coupling strength γ, which is independent of different initial states and nonuniform magnetic field b.
基金supported by National Natural Science Foundation of China(No.10776037)
文摘A novel method was reported to measure the remnant magnetic field in Lorentz mode in a FEI Tecnai F20 transmission electron microscope equipped with a Lorentz lens. The movement of the circle Bloch line of the cross-tie wall in Permalloy is used to measure the remnant magnetic field by tilting the specimen and adjusting the objective lens current. The remnant magnetic field is estimated to be about 17 Oe, in a direction opposite to that of the objective lens magnetic field. The remnant magnetic field can be compensated by adjusting the value of the objective lens current.
文摘This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.
基金the NNSFC(No.19772014)the China National Foundation for Outstanding Young Researchers(No.19725207)Foundation for University Key Teacher by the Ministry of Education of China
文摘The purpose of this paper is to study the magnetomechanicalcharacteristic of a microsensor which is composed of a cantileveredbeam-plate with ferromagnetic films in order to measure the magneticfield from the deformation of plate when the microsensor is locatedin the magnetic field. To this end, a nu- merical approach made up ofthe finite element method for magnetic field and the finitedifference method for deflection of the microsensor is proposed toperform the numerical analysis of deflection under magnetoelasticinteraction. Some quantitative results of a case study for themagnetoelastic characteristic between the mag- netic field anddeflection of the microsensor in the magnetic field are given. Theresults show that this mi- crosensor can be used not only to measurethe magnitude of magnetic intensity, but also to possibly monitor thedirection of the vector of the magnetic field.
基金financially supported by the Natural Science Foundation of Hunan Province (Grant No.2021JJ41082)the Research Foundation of Education Bureau of Hunan Province (Grant No.21B0231).
文摘This study investigates the unsteady natural convection and entropy generation under the effects of magnetic field and baffles inside a nanofluid filled E-shaped enclosure.The nanofluid flow is driven by time-varying sidewall temperature and is partitioned by baffles.Multiple factors are discussed,including the enclosure aspect ratio(0.2≤AR≤0.7),nanofluid volume fractions(0≤φ≤0.1),Hartmann numbers(0≤Ha≤80),frequency of time-varying side wall temperature(0.01≤ω≤0.1),baffle locations(0≤d≤0.4)and length(0≤l≤0.4).An economic analysis is conducted to show the nanofluid cost of enhancing thermal transfer and reducing entropy generation.The modelling results show that increasing aspect ratio and nanofluid volume fraction enhance the thermal transfer behavior,while the magnetic field suppresses the nanofluid natural convection.Total entropy generation monotonically decreases with the increasing nanofluid volume fraction and Hartmann number.Installing baffles into horizontal walls can boost the thermal transfer behavior and decrease the total entropy generation.
文摘The present study examines the effect of induced magnetic field and convectiveboundary condition on magnetohydrodynamic(MHD)stagnation point flow and heat transfer dueto upper-convected Maxwell fluid over a stretching sheet in the presence of nanoparticles.Boundary layer theory is used to simplify the equation of motion,induced magnetic field,energyand concentration which results in four coupled non-linear ordinary differential equations.Thestudy takes into account the effect of Brownian motion and thermophoresis parameters.Thegoverning equations and their associated boundary conditions are initially cast into dimensionlessfonm by similarity variables.The resulting system of equations is then solved numerically usingfourth order Runge-Kutta-Fehlberg method along with shooting technique.The solution for thegoverning equations depends on parameters such as,magnetic,velocity ratio parameter B,Biotnumber Bi,Prandtl number Pr,Lewis number Le,Brownian motion Nb,reciprocal of magnetic Prandtl number A,the thermophoresis parameter Nt,and Maxwell parameter β.The numerical results are obtained for velocity,temperature,induced magnetic field andconcentration profiles as well as skin friction coefficient,the local Nusselt number andSherwood number.The results indicate that the skin friction coefficient,the local Nusseltnumber and Sherwood number decrease with an increase in B and M parameters.Moreover,local Sherwood number-φ'(O)decreases with an increase in convective parameter Bi,but the local Nusselt number-φ'(0)increases with an increase in Bi.The results are displayed both ingraphical and tabular form to illustrate the effect of the governing parameters on thedimensionless velocity,induced magnetic field,temperature and concentration.The numericalresults are compared and found to be in good agreement with the previously published resultson special cases of the problem.