Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the ...Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the objective of this study was to assess the risk of cancer due to the ingestion of alpha and beta emitting radionuclides in the different types of water consumed in the region. A total of 63 water samples with 43 tap water samples, 5 bottled mineral water and 15 sachet water samples was collected and taken to GAEC laboratory for analysis. The low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) was used to determine alpha and beta activity concentrations. Activity concentrations of both gross alpha and gross beta obtained in water sample were respectively lower than the WHO recommended limits of 0.1 Bq/l and 1 Bq/l. Also, the annual effective dose and total equivalent effective dose found in mineral bottled water samples were higher than in other types of water. The assessment of radiological lifetime risk has shown values of cancer risk due to ingestion alpha and beta emitters lower than recommended limit. These results indicate that there is no health hazard associated to consumption of water in the District of Abidjan.展开更多
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined p...Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.展开更多
Mineralogical evidence of water–rock interactions is a strong indicator of the presence of liquid water on ancient Mars.Previous observations have found widely distributed hydrated minerals in the southern highlands,...Mineralogical evidence of water–rock interactions is a strong indicator of the presence of liquid water on ancient Mars.Previous observations have found widely distributed hydrated minerals in the southern highlands,whereas such discoveries have been rare in the younger northern lowlands.China’s first Mars exploration mission successfully landed a rover(Zhurong)in southern Utopia Planitia,providing an opportunity to analyze the exposed rocks in the northern lowlands.Using data from the short-wave infrared(SWIR)spectrometer and the laser-induced breakdown spectrometer(LIBS)onboard the Zhurong rover,we found evidence for the widespread presence of hydrated minerals(probably sulfates or silica)around the landing site.The basaltic-like elemental compositions of the targeted samples further indicated that hydrated minerals are likely minor components.The results from Zhurong suggest that active aqueous activities occurred during the overall cold and dry Amazonian era on Mars.However,further evaluations are needed on the duration and scale of these activities.展开更多
The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed tha...The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.展开更多
Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To ove...Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To overcome these problems,we designed an amphiphilic Janus-structured polyaniline(PANI)/ZrC/cellulose acetate(CA)(J-PZCA) membrane.Firstly,the interfacial interaction between PANI and ZrC enhances the photoabsorption and photothermal conversion efficiency.Secondly,low thermal conductivity reduces the heat lost at the interface.Most importantly,ZrC could facilitate interfacial activation,which weakens the intermolecular forces of water by affecting the hydrogen bond.Under 1 solar irradiation(1 sun),the composite membrane exhibits a high evaporation rate of 1.31 kg m^(-2)h^(-1) and an excellent efficiency of 79.4%.In addition,the sewage purification and seawater desalination experiments reveal a remarkable purification capability of J-PZCA membrane.Especially for the treatment of high-concentration salt solution,it realizes a long-term stable evaporation performance due to the excellent salt deposition resistance.Therefore,the J-PZCA membrane constructed in this study provides a new perspective for the design of efficient interfacial evaporation devices.展开更多
The gravity recovery and climate experiment(GRACE)has emerged as a crucial source of land water storage information in hydrological analysis and research.Numerous factors contribute to regional terrestrial water stora...The gravity recovery and climate experiment(GRACE)has emerged as a crucial source of land water storage information in hydrological analysis and research.Numerous factors contribute to regional terrestrial water storage(TWS),resulting in a complex mechanism.In the Loess Plateau region,the continuous alteration of natural conditions and profound impact of human activities have posed a serious threat to the natural ecosystem,leading to an escalating trend of TWS reduction.Addressing the specific analysis of how natural conditions and human activities affect TWS represents a pressing issue.This study employed the residual analysis method to discern the contribution rates of natural conditions and human activities,elucidated the spatial and temporal changes associated with each factor,and ascertained their individual influence.The findings indicated that TWS on the Loess Plateau exhibited a downward trend of-4.89 mm·a^(-1)from 2003 to 2017.The combined effects of climate change and human activities accounted for alterations in water resource reserves across most areas of the Loess Plateau,with human activities predominantly driving these changes.Precipitation emerged as the primary natural factor influencing TWS variations,and NDVI demonstrated a positive feedback effect on TWS at approximately 30%.Substantial spatial disparities in TWS existed within the Loess Plateau,with human activities identified as the primary cause for the decreasing trend.Vegetation restoration plays a positive role in saving water resources in the Loess Plateau to some extent,and vegetation growth exceeding the regional load will lead to water shortage.展开更多
The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After...The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After reaction, tuffaceous slate became light colored and soft, and its mass density reduced. The amount of gold extracted from tuffaceous slate ranges widely, from 0 027 to 0 234 μg/g. Chlorine solution may activate appreciable amount of gold, and the gold migratory rate is high enough, from 50 70% to 92 30%, which reveals that sulphur and chlorine work together in solutions to accelerate gold activation and migration, and to realize gold mineralization in favorable places.展开更多
Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insid...Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insidious water-conductive faults. The influence of normal and shear stresses on fault activation and effective shear stress distribution in the fault plane was acquired under mining conditions.Using fracture mechanics theory to calculate the stress intensity factor of an insidious fault front, we have derived the criterion for main fault activation. Results indicate that during the whole working face advance, transpressions are exerted on fault planes twice successively in opposite directions. In most cases, the second transpression is more likely to lead to fault activation. Activation is influenced by many factors, predominant among which are: burial depth of the insidious fault, friction angle of the fault plane, face advance direction and pore water pressure. Steep fault planes are more easily activated to induce a sustained water inrush in the face.展开更多
The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction wa...The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system.展开更多
The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal ...The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal method followed by a low-temperature pyrolysis treatment was reported.Results demonstrate that the incorporation of Ni-doping triggers the lattice distortion of W_(18)O_(49) for the increasement of oxygen defects.Further,high-valent W^(6+)are partially reduced to low-valent W^(4+),wherein the electrons originate from the oxidation process of Ni^(2+)to Ni^(3+).The Ni^(3+)ions show an enhanced orbital overlap with the OER reaction intermediates.The generated W^(4+)ions contribute to release oxygen vacancies,eventually reorganizing Ni-doped W_(18)O_(49)/NF to unique electrochemical active species with a special amorphous-crystalline interface(AM/NiWO_x/NiOOH/NF).Simultaneously,the reconstruction results in an optimized valence band and conduction band.Eventually,the resultant AM/NiWO_x/NiOOH/NF with abundant active sites and improved oxidation/reduction capability exhibits more superior catalytic performance compared with the Ni-doped W_(18)O_(49)/NF counterpart.This study gives more insights in the electrochemical evolution of the tungsten-based oxide and provides effective strategies for optimizing the catalytic activity of materials with inherent hydrogen evolution reaction limitations.展开更多
Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of wat...Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies.展开更多
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using...The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.展开更多
Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration leve...Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration levels recommended, are detrimental to the quality of the water, soil and crops (plant) with subsequent human health risks. The objective of the work was to evaluate the impacts of human-based activities on the heavy metal properties of surface water with focus on the Kumba River basin. Field observations, interviews, field measurements and laboratory analyses of different water samples enabled us to collect the different data. The results show four main human-based activities within the river basin (agriculture, livestock production, domestic waste disposal and carwash activities) that pollute surface water. Approximately 20.61 tons of nitrogen and phosphorus from agricultural activities, 156.48 tons of animal wastes, 2517.5 tons of domestic wastes and 1.52 tons of detergent from carwash activities were deposited into the river each year. A highly significant difference at 1% was observed between the upstream and downstream heavy metal loads in four of the five heavy metals tested except for copper that was not significant. Lead concentrations were highest in all the activities with an average of 2.4 mg∙L<sup>−</sup><sup>1</sup> representing 57.81%, followed by zinc with 1.596 mg∙L<sup>−</sup><sup>1</sup> (38.45%) and manganese with 0.155 mg∙L<sup>−</sup><sup>1</sup> (3.74%) for the different anthropogenic activities thus indicating that these activities highly lead to pollution of the Kumba River water. The level of zinc and manganese was significantly influenced at ρ 005 by anthropogenic activities though generally the variations were in the order: carwash (3.196 mg∙L<sup>−</sup><sup>1</sup>) < domestic waste disposal (3.347 mg∙L<sup>−</sup><sup>1</sup>) < agriculture (4.172 mg∙L<sup>−</sup><sup>1</sup>) < livestock (4.886 mg∙L<sup>−</sup><sup>1</sup>) respectively and leading to a total of 14.04 tons of heavy metal pollutants deposited each day.展开更多
Platelets are fragments of cytoplasm that are released from the mature megakaryocyte of the bone marrow.The main function of platelets is coagulation and hemostasis.Platelets play a central role in formation of pathol...Platelets are fragments of cytoplasm that are released from the mature megakaryocyte of the bone marrow.The main function of platelets is coagulation and hemostasis.Platelets play a central role in formation of pathological thrombosis.Many ischemic diseases are caused by excessive activa.tion of platelets,which can lead to thrombosis and death.Salvia miltiorrhiza Bunge,the dry roots and rhizomes of the Salvia miltiorrhiza plants,includes some water-soluble compounds,which play positive effects on diverse diseases such as neurodegenerative diseases,diabetic complications or cardiovas.cular diseases.In this paper,the components of the water-soluble in Salvia miltiorrhiza,as well as the applications in thrombotic diseases are summarized.The results show that water-soluble compounds include salvianolic acid A,salvianolic acid B,protocatechuic aldehyde,Danshensu,etc.The water-soluble compounds are applied to ischemic stroke,myocardial infarction and other diseases caused by thrombus.We also discussed the mechanisms of water-soluble compounds on the platelets based on our research results and the data obtained from references.The results indicate that water soluble compounds in Salvia miltiorrhiza play the antiplatelet and antithrombotic effects via different mechanisms,for example,salvianolic acid A inhibits platelet aggregation without promoting bleeding by increasing cAMP,inhibiting phosphoinositide 3-kinase(PI3K) and affecting GPCRs(G protein-coupled receptors) signaling path.ways;salvianolic acid B inhibit platelets as a P2Y12 antagonist and PDE inhibitor;Danshensu inhibits platelet activity may be related to inhibition of calcium influx.In conclusion,thrombotic diseases seriously affect human life and health.The existing antiplatelet drugs have some disadvantages.For example,aspirin may cause intracranial hemorrhage,and clopidogrel may play a slower role.Salvia miltiorrhiza as a traditional Chinese medicine has positive pharmacological activity and exerts antiplatelet aggrega.tion through different mechanisms.In the future,we will develop the new drugs which prevent and treat thrombotic diseases with the further study of the pharmacological effects and mechanisms of Salvia miltiorrhiza.展开更多
Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ec...Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ecological environment,they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment.Therefore,it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes.Using the Soil and Water Assessment Tool(SWAT)models and sensitivity analyses based on the Budyko hypothesis,this study quantitatively evaluated the effects of climate change,direct water withdrawal,and soil and water conservation measures on runoff in the LRB during different periods,including different responses to runoff discharge,hydrological regime,and flood processes.The runoff series were divided into a baseline period(1956-1969)and two altered periods,i.e.,period 1(1970-1999)and period 2(2000-2020).Human activities were the main cause of the decrease in runoff during the altered periods,contributing 86.03%(-29.61 mm),while the contribution of climate change was only 13.70%(-4.70 mm).The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season.Analysis of two flood cases indicated a 66.00%-84.00%reduction in basin runoff capacity due to soil and water conservation measures in the upstream area.Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98%and 55.16%,respectively,even with nearly double the precipitation.The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area.These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.展开更多
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio...The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.展开更多
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r...The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.展开更多
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.
文摘Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the objective of this study was to assess the risk of cancer due to the ingestion of alpha and beta emitting radionuclides in the different types of water consumed in the region. A total of 63 water samples with 43 tap water samples, 5 bottled mineral water and 15 sachet water samples was collected and taken to GAEC laboratory for analysis. The low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) was used to determine alpha and beta activity concentrations. Activity concentrations of both gross alpha and gross beta obtained in water sample were respectively lower than the WHO recommended limits of 0.1 Bq/l and 1 Bq/l. Also, the annual effective dose and total equivalent effective dose found in mineral bottled water samples were higher than in other types of water. The assessment of radiological lifetime risk has shown values of cancer risk due to ingestion alpha and beta emitters lower than recommended limit. These results indicate that there is no health hazard associated to consumption of water in the District of Abidjan.
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
文摘Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.
基金funded by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB41000000)the National Natural Science Foundation of China (Grant No. 41930216)+1 种基金the Pre-research Project on Civil Aerospace Technologies (Grant No. D020202) of the Chinese National Space Administrationthe Fundamental Research Funds for the Central Universities of China (Grant No. WK3410000019)。
文摘Mineralogical evidence of water–rock interactions is a strong indicator of the presence of liquid water on ancient Mars.Previous observations have found widely distributed hydrated minerals in the southern highlands,whereas such discoveries have been rare in the younger northern lowlands.China’s first Mars exploration mission successfully landed a rover(Zhurong)in southern Utopia Planitia,providing an opportunity to analyze the exposed rocks in the northern lowlands.Using data from the short-wave infrared(SWIR)spectrometer and the laser-induced breakdown spectrometer(LIBS)onboard the Zhurong rover,we found evidence for the widespread presence of hydrated minerals(probably sulfates or silica)around the landing site.The basaltic-like elemental compositions of the targeted samples further indicated that hydrated minerals are likely minor components.The results from Zhurong suggest that active aqueous activities occurred during the overall cold and dry Amazonian era on Mars.However,further evaluations are needed on the duration and scale of these activities.
基金National Natural Science Foundation of China(No.32260643)for financial support of this study。
文摘The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.
基金supported by the National Natural Science Foundation of China (52172278)Interdisciplinary Research Foundation of HIT (IR2021103)。
文摘Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To overcome these problems,we designed an amphiphilic Janus-structured polyaniline(PANI)/ZrC/cellulose acetate(CA)(J-PZCA) membrane.Firstly,the interfacial interaction between PANI and ZrC enhances the photoabsorption and photothermal conversion efficiency.Secondly,low thermal conductivity reduces the heat lost at the interface.Most importantly,ZrC could facilitate interfacial activation,which weakens the intermolecular forces of water by affecting the hydrogen bond.Under 1 solar irradiation(1 sun),the composite membrane exhibits a high evaporation rate of 1.31 kg m^(-2)h^(-1) and an excellent efficiency of 79.4%.In addition,the sewage purification and seawater desalination experiments reveal a remarkable purification capability of J-PZCA membrane.Especially for the treatment of high-concentration salt solution,it realizes a long-term stable evaporation performance due to the excellent salt deposition resistance.Therefore,the J-PZCA membrane constructed in this study provides a new perspective for the design of efficient interfacial evaporation devices.
基金financial support from the Natural Science Basic Research Plan of Shaanxi Province(2023-JC-YB-275)the National Natural Science Foundation of China(42071144,41971218)+1 种基金the Fundamental Research Funds for the Central Universities,Shaanxi Normal University(2021CBWY003)the Special Scientific Research Project of Shaanxi Normal University(22YDYLZ002)。
文摘The gravity recovery and climate experiment(GRACE)has emerged as a crucial source of land water storage information in hydrological analysis and research.Numerous factors contribute to regional terrestrial water storage(TWS),resulting in a complex mechanism.In the Loess Plateau region,the continuous alteration of natural conditions and profound impact of human activities have posed a serious threat to the natural ecosystem,leading to an escalating trend of TWS reduction.Addressing the specific analysis of how natural conditions and human activities affect TWS represents a pressing issue.This study employed the residual analysis method to discern the contribution rates of natural conditions and human activities,elucidated the spatial and temporal changes associated with each factor,and ascertained their individual influence.The findings indicated that TWS on the Loess Plateau exhibited a downward trend of-4.89 mm·a^(-1)from 2003 to 2017.The combined effects of climate change and human activities accounted for alterations in water resource reserves across most areas of the Loess Plateau,with human activities predominantly driving these changes.Precipitation emerged as the primary natural factor influencing TWS variations,and NDVI demonstrated a positive feedback effect on TWS at approximately 30%.Substantial spatial disparities in TWS existed within the Loess Plateau,with human activities identified as the primary cause for the decreasing trend.Vegetation restoration plays a positive role in saving water resources in the Loess Plateau to some extent,and vegetation growth exceeding the regional load will lead to water shortage.
文摘The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After reaction, tuffaceous slate became light colored and soft, and its mass density reduced. The amount of gold extracted from tuffaceous slate ranges widely, from 0 027 to 0 234 μg/g. Chlorine solution may activate appreciable amount of gold, and the gold migratory rate is high enough, from 50 70% to 92 30%, which reveals that sulphur and chlorine work together in solutions to accelerate gold activation and migration, and to realize gold mineralization in favorable places.
基金funded by the Major Basic Research and Development Program of China(No.2014CB046905)the Ph.D.Programs Foundation of Ministry of Education of China(No.20130095110018)
文摘Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insidious water-conductive faults. The influence of normal and shear stresses on fault activation and effective shear stress distribution in the fault plane was acquired under mining conditions.Using fracture mechanics theory to calculate the stress intensity factor of an insidious fault front, we have derived the criterion for main fault activation. Results indicate that during the whole working face advance, transpressions are exerted on fault planes twice successively in opposite directions. In most cases, the second transpression is more likely to lead to fault activation. Activation is influenced by many factors, predominant among which are: burial depth of the insidious fault, friction angle of the fault plane, face advance direction and pore water pressure. Steep fault planes are more easily activated to induce a sustained water inrush in the face.
基金supported by National Natural Science Foundation of China(22369022)Technology Innovation Leading Program of Shaanxi(2022QFY07-03)。
文摘The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system.
基金supported by the National Natural Science Foundation of China (52073166)the China Scholarship Council (CSC) for the Research Training Program of Guojuan Hai to study at University of Wollongong(201908610223)+5 种基金the Xi’an Key Laboratory of Green Manufacture of Ceramic Materials Foundation (2019220214SYS017CG039)the Key Program for International S&T Cooperation Projects of Shaanxi Province(2020KW-038, 2020GHJD-04)the Science and Technology Program of Xi’an,China (2020KJRC0009)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No. 20JY001)Science and Technology Resource Sharing Platform of Shaanxi Province (2020PT-022)Science and Technology Plan of Weiyang District,Xi’an (202009)。
文摘The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal method followed by a low-temperature pyrolysis treatment was reported.Results demonstrate that the incorporation of Ni-doping triggers the lattice distortion of W_(18)O_(49) for the increasement of oxygen defects.Further,high-valent W^(6+)are partially reduced to low-valent W^(4+),wherein the electrons originate from the oxidation process of Ni^(2+)to Ni^(3+).The Ni^(3+)ions show an enhanced orbital overlap with the OER reaction intermediates.The generated W^(4+)ions contribute to release oxygen vacancies,eventually reorganizing Ni-doped W_(18)O_(49)/NF to unique electrochemical active species with a special amorphous-crystalline interface(AM/NiWO_x/NiOOH/NF).Simultaneously,the reconstruction results in an optimized valence band and conduction band.Eventually,the resultant AM/NiWO_x/NiOOH/NF with abundant active sites and improved oxidation/reduction capability exhibits more superior catalytic performance compared with the Ni-doped W_(18)O_(49)/NF counterpart.This study gives more insights in the electrochemical evolution of the tungsten-based oxide and provides effective strategies for optimizing the catalytic activity of materials with inherent hydrogen evolution reaction limitations.
基金supported in part by the National Natural Science Foundation of China under Grant 42374037the State Key Laboratory of Geodesy and Earth’s Dynamics,Innovation Academy for Precision Measurement Science and Technology under Grant SKLGED2022-3-5in part by the Outstanding Youth Science Fund of Xi’an University of Science and Technology under Grant 2018YQ2-10。
文摘Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies.
文摘The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.
文摘Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration levels recommended, are detrimental to the quality of the water, soil and crops (plant) with subsequent human health risks. The objective of the work was to evaluate the impacts of human-based activities on the heavy metal properties of surface water with focus on the Kumba River basin. Field observations, interviews, field measurements and laboratory analyses of different water samples enabled us to collect the different data. The results show four main human-based activities within the river basin (agriculture, livestock production, domestic waste disposal and carwash activities) that pollute surface water. Approximately 20.61 tons of nitrogen and phosphorus from agricultural activities, 156.48 tons of animal wastes, 2517.5 tons of domestic wastes and 1.52 tons of detergent from carwash activities were deposited into the river each year. A highly significant difference at 1% was observed between the upstream and downstream heavy metal loads in four of the five heavy metals tested except for copper that was not significant. Lead concentrations were highest in all the activities with an average of 2.4 mg∙L<sup>−</sup><sup>1</sup> representing 57.81%, followed by zinc with 1.596 mg∙L<sup>−</sup><sup>1</sup> (38.45%) and manganese with 0.155 mg∙L<sup>−</sup><sup>1</sup> (3.74%) for the different anthropogenic activities thus indicating that these activities highly lead to pollution of the Kumba River water. The level of zinc and manganese was significantly influenced at ρ 005 by anthropogenic activities though generally the variations were in the order: carwash (3.196 mg∙L<sup>−</sup><sup>1</sup>) < domestic waste disposal (3.347 mg∙L<sup>−</sup><sup>1</sup>) < agriculture (4.172 mg∙L<sup>−</sup><sup>1</sup>) < livestock (4.886 mg∙L<sup>−</sup><sup>1</sup>) respectively and leading to a total of 14.04 tons of heavy metal pollutants deposited each day.
基金supported by National Key R&D Plan(2016YFC1000905)
文摘Platelets are fragments of cytoplasm that are released from the mature megakaryocyte of the bone marrow.The main function of platelets is coagulation and hemostasis.Platelets play a central role in formation of pathological thrombosis.Many ischemic diseases are caused by excessive activa.tion of platelets,which can lead to thrombosis and death.Salvia miltiorrhiza Bunge,the dry roots and rhizomes of the Salvia miltiorrhiza plants,includes some water-soluble compounds,which play positive effects on diverse diseases such as neurodegenerative diseases,diabetic complications or cardiovas.cular diseases.In this paper,the components of the water-soluble in Salvia miltiorrhiza,as well as the applications in thrombotic diseases are summarized.The results show that water-soluble compounds include salvianolic acid A,salvianolic acid B,protocatechuic aldehyde,Danshensu,etc.The water-soluble compounds are applied to ischemic stroke,myocardial infarction and other diseases caused by thrombus.We also discussed the mechanisms of water-soluble compounds on the platelets based on our research results and the data obtained from references.The results indicate that water soluble compounds in Salvia miltiorrhiza play the antiplatelet and antithrombotic effects via different mechanisms,for example,salvianolic acid A inhibits platelet aggregation without promoting bleeding by increasing cAMP,inhibiting phosphoinositide 3-kinase(PI3K) and affecting GPCRs(G protein-coupled receptors) signaling path.ways;salvianolic acid B inhibit platelets as a P2Y12 antagonist and PDE inhibitor;Danshensu inhibits platelet activity may be related to inhibition of calcium influx.In conclusion,thrombotic diseases seriously affect human life and health.The existing antiplatelet drugs have some disadvantages.For example,aspirin may cause intracranial hemorrhage,and clopidogrel may play a slower role.Salvia miltiorrhiza as a traditional Chinese medicine has positive pharmacological activity and exerts antiplatelet aggrega.tion through different mechanisms.In the future,we will develop the new drugs which prevent and treat thrombotic diseases with the further study of the pharmacological effects and mechanisms of Salvia miltiorrhiza.
基金Fundamental Research Funds for the Central Universities(ZY20230206)Langfang City Science and Technology Research and Development Plan Self-raised Funds Project(2023013216).
文摘Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ecological environment,they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment.Therefore,it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes.Using the Soil and Water Assessment Tool(SWAT)models and sensitivity analyses based on the Budyko hypothesis,this study quantitatively evaluated the effects of climate change,direct water withdrawal,and soil and water conservation measures on runoff in the LRB during different periods,including different responses to runoff discharge,hydrological regime,and flood processes.The runoff series were divided into a baseline period(1956-1969)and two altered periods,i.e.,period 1(1970-1999)and period 2(2000-2020).Human activities were the main cause of the decrease in runoff during the altered periods,contributing 86.03%(-29.61 mm),while the contribution of climate change was only 13.70%(-4.70 mm).The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season.Analysis of two flood cases indicated a 66.00%-84.00%reduction in basin runoff capacity due to soil and water conservation measures in the upstream area.Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98%and 55.16%,respectively,even with nearly double the precipitation.The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area.These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.
基金National Natural Science Foundation of China (42041004)。
文摘The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.