Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lie...Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lies between the two traditional ways. Field reversed configuration (FFtC) is a good candidate of magnetized targets due to its translatable, compressible, high /3 and high energy density properties. Dynamic formation process of high density FFtC is observed on the YingGuang 1 device for the first time in China. The evolution of a magnetic field is detected with magnetic probes, and the compression process can be clearly seen from images taken with a high-speed multi-frame CCD camera. The process is also studied with two-dimensional magneto hydrodynamic code MPF-2D theoretically, and the results agree well with the experiment. Combining the experimental data and the theoretical analysis, the length of the formed FRC is about 39 cm, the diameter is about 2-2. 7cm, the average density is 1.3× 1016 cm-3, and the average temperature is 137eV.展开更多
Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial ...As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion,has been recently widely pursued around the world.To investigate the formation and confinement of the FRC plasma injector for MTF,the Yingguang-I,which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system,was constructed at the Institute of Fluid Physics(IFP),China.This paper presents the pulsed power components and their parameters of the device in detail,then gives a brief description of progress in experiments of FRC formation.Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T,10 kA/1.2 Tand 1.7 MA/3.4 Twere achieved in the bias,mirror and q-pinch circuits with quarter cycle of 80 ms,700 ms and 3.8 ms respectively.The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV.With H_(2) gas of 8 Pa,the plasma target of density 10^(16) cm^(-3),separatrix radius 4 cm,half-length 17 cm,equilibrium temperature 200 eV and lifetime 3 ms(approximately the half pulse width of the reversed field)have been obtained through the q-pinch method when the bias,mirror,ionization and θ-pinch banks were charged to 5 kV,5 kV,55 kV and ±45 kV respectively.The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code(2D-MHD).展开更多
基金Supported by the Development Foundation of China Academy of Engineering Physics under Grant No 2011B0402009the National Natural Science Foundation of China under Grant Nos 11375163,11575029 and 11175028
文摘Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lies between the two traditional ways. Field reversed configuration (FFtC) is a good candidate of magnetized targets due to its translatable, compressible, high /3 and high energy density properties. Dynamic formation process of high density FFtC is observed on the YingGuang 1 device for the first time in China. The evolution of a magnetic field is detected with magnetic probes, and the compression process can be clearly seen from images taken with a high-speed multi-frame CCD camera. The process is also studied with two-dimensional magneto hydrodynamic code MPF-2D theoretically, and the results agree well with the experiment. Combining the experimental data and the theoretical analysis, the length of the formed FRC is about 39 cm, the diameter is about 2-2. 7cm, the average density is 1.3× 1016 cm-3, and the average temperature is 137eV.
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11375163,11605182,11605183)the Development Foundation of China Academy of Engineering Physics(Grant No.2011B0402009)the Science Challenge Project No.2016212A505.
文摘As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion,has been recently widely pursued around the world.To investigate the formation and confinement of the FRC plasma injector for MTF,the Yingguang-I,which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system,was constructed at the Institute of Fluid Physics(IFP),China.This paper presents the pulsed power components and their parameters of the device in detail,then gives a brief description of progress in experiments of FRC formation.Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T,10 kA/1.2 Tand 1.7 MA/3.4 Twere achieved in the bias,mirror and q-pinch circuits with quarter cycle of 80 ms,700 ms and 3.8 ms respectively.The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV.With H_(2) gas of 8 Pa,the plasma target of density 10^(16) cm^(-3),separatrix radius 4 cm,half-length 17 cm,equilibrium temperature 200 eV and lifetime 3 ms(approximately the half pulse width of the reversed field)have been obtained through the q-pinch method when the bias,mirror,ionization and θ-pinch banks were charged to 5 kV,5 kV,55 kV and ±45 kV respectively.The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code(2D-MHD).