期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
SIMULATING METHOD OF MAGNETIZING INRUSH CURRENT OF POWER TRANSFORMERS USING CONCEPT OF INSTANTANEOUS POWER
1
作者 贺家李 段玉倩 《Transactions of Tianjin University》 EI CAS 1999年第1期1-6,共6页
In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous p... In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles. 展开更多
关键词 power transformer magnetizing inrush current remnant flue
下载PDF
Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm
2
作者 Dazhi Wang Pengyi Pan Bowen Niu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1535-1555,共21页
The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to ... The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to the load and generates heat and losses,reducing its energy transfer efficiency.This issue has become an obstacle for PMEC to develop toward a higher power.This paper aims to improve the overall performance of PMEC through multi-objective optimization methods.Firstly,a PMEC modeling method based on the Levenberg-Marquardt back propagation(LMBP)neural network is proposed,aiming at the characteristics of the complex input-output relationship and the strong nonlinearity of PMEC.Then,a novel competition mechanism-based multi-objective particle swarm optimization algorithm(NCMOPSO)is proposed to find the optimal structural parameters of PMEC.Chaotic search and mutation strategies are used to improve the original algorithm,which improves the shortcomings of multi-objective particle swarm optimization(MOPSO),which is too fast to converge into a global optimum,and balances the convergence and diversity of the algorithm.In order to verify the superiority and applicability of the proposed algorithm,it is compared with several popular multi-objective optimization algorithms.Applying them to the optimization model of PMEC,the results show that the proposed algorithm has better comprehensive performance.Finally,a finite element simulation model is established using the optimal structural parameters obtained by the proposed algorithm to verify the optimization results.Compared with the prototype,the optimized PMEC has reduced eddy current losses by 1.7812 kW,increased output torque by 658.5 N·m,and decreased costs by 13%,improving energy transfer efficiency. 展开更多
关键词 Competition mechanism Levenberg-Marquardt back propagation neural network multi-objective particle swarm optimization algorithm permanent magnet eddy current coupler
下载PDF
Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation 被引量:5
3
作者 陈航 接金川 +2 位作者 付莹 马红军 李廷举 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1295-1300,共6页
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul... The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn. 展开更多
关键词 direct current pulsed magnetic field pure aluminum inoculation grain refinement solidification micro structure
下载PDF
Phonon-Assisted Spin Current in Single Molecular Magnet Junctions
4
作者 牛鹏斌 石云龙 +2 位作者 孙祝 聂一行 罗洪刚 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期106-109,共4页
Owing to the bistable character of the single molecular magnet (SMM), it can generate 100% spin-polarized currents even connected with normal (N) leads. In this work, we study the phonon-assisted spin current in N... Owing to the bistable character of the single molecular magnet (SMM), it can generate 100% spin-polarized currents even connected with normal (N) leads. In this work, we study the phonon-assisted spin current in N- SMM-N systems. We mainly focus on the interplay of SMM's bistable character and electron-phonon coupling. It is found that when SMM is trapped in one of the lowest bistable states, it can generate phonon-assisted spin- polarized currents. At the up-spin transport channel, it is accompanied by a phonon-assisted up-spin current, while at the down-spin transport channel, it is accompanied by a phonon-assisted down-spin current. 展开更多
关键词 Phonon-Assisted Spin current in Single Molecular Magnet Junctions SMM
下载PDF
Analysis Magnetization Current of Harmonic Phenomena and Power Factor as Indicators of Core Saturation at Transformer 3-Phase
5
作者 Erwin Dermawan Deni Almanda +2 位作者 Laelatus Zahro Anwar Ilmar Ramadhan Ery Diniardi 《Journal of Power and Energy Engineering》 2016年第5期1-6,共6页
Saturation is a condition in which the magnets are fully transformer cores and generate maximum magnetic flux. Some parts affect the resilience and create distortions that can harm the heart. Core saturation can also ... Saturation is a condition in which the magnets are fully transformer cores and generate maximum magnetic flux. Some parts affect the resilience and create distortions that can harm the heart. Core saturation can also increase the temperature and magnetization current transformer. In this study, we proposed a measurement method to obtain the necessary parameters to calculate a reliable indicator of the state of the transformer core saturation. The main effects of nonlinear flow in the transformer core are saturation, eddy current and hysteresis. In saturation, the core transformer is as a source of generating harmonic currents, some of which will flow directly to the primary and secondary windings. The method is based on the magnetization current, the phenomenon of harmonics and power factor is evaluated by measuring the no-load current at three-phase transformer, with a high magnetic flux density imposed. Measurements were taken at each phase of the transformer core. The transformer is connected to a variable voltage variable frequency (VVVF) as a voltage source and the investigation carried out at various flux densities. The results showed that the magnetization current and harmonic phenomena increased significantly when the high magnetic flux density and vice versa injected with power factor declined sharply. This phenomenon can be used as an indication of saturation of the 3-phase transformer core. 展开更多
关键词 Core Saturation Magnetization current HARMONIC
下载PDF
Analysis and suppression method of transformer no-load closing excitation inrush current
6
作者 Li Zhengming Chen Yuchen Wang Chengmin 《International English Education Research》 2014年第12期97-99,共3页
The primary winding of the transformer will generate large inrush current due to the saturation of iron core when an unloaded transformer is switched-on. The inrush current not only causes mechanical interaction force... The primary winding of the transformer will generate large inrush current due to the saturation of iron core when an unloaded transformer is switched-on. The inrush current not only causes mechanical interaction force due to which the windings are damaged, but also induces the differential protection relays to operate incorrectly. In this paper, the mathematical model of unloaded single phase transformer in switch-on is analyzed; the computation formulas of the inrush current and its interruption angle are presented. The experiment investigation of single phase transformers with different capacities shows that the inrush current measurement result is consistent with theoretical analysis. The inrush current waveform is typically a steeple top waveform with high order harmonics and damping in one direction. In the same condition, large inrush current amplitude will be induced with smaller switching angle, larger residual flux and smaller saturation flux. 展开更多
关键词 TRANSFORMER magnetizing impedance magnetizing inrush current Unload switched-on
下载PDF
An Inquiry into Two Intriguing Values of the Critical Current Density of Bi-2212
7
作者 Gulshan Prakash Malik Vijaya Shankar Varma 《World Journal of Condensed Matter Physics》 CAS 2021年第3期53-64,共12页
The empirically reported values of the critical current density (<i>j<sub>c</sub></i>) of Bi-2212 as 2.4 × 10<sup>5</sup> (<i>j<sub>c</sub></i><sub&g... The empirically reported values of the critical current density (<i>j<sub>c</sub></i>) of Bi-2212 as 2.4 × 10<sup>5</sup> (<i>j<sub>c</sub></i><sub>1</sub>;Sample 1) and 1.0 × 10<sup>6</sup> A/cm<sup>2</sup> (<i>j<sub>c</sub></i><sub>2</sub>;Sample 2) are intriguing because both of them correspond to the <i>same</i> values of the temperature <i>T</i> = 4.2 K and the applied magnetic field <i>H</i> = 12 × 10<sup>4</sup> G. This difference is conventionally attributed to such factors—not all of which are quantifiable—as the geometry, dimensions and the nature of dopants and the manners of preparation of the samples which cause their granular structures, grain boundaries, alignment of the grains and so on to differ. Based on the premise that the chemical potential <i>μ</i> subsumes most of these features, given herein is a novel explanation of the said results in terms of the values of <i>μ</i> of the two samples. This paper revisits the problem that was originally addressed in [Malik G.P., Varma V.S. (2020) WJCMP, 10, 53-70] in the more accurate framework of a subsequent paper [Malik G.P., Varma V.S. (2021) JSNM, 34, 1551-1561]. Besides, it distinguishes between the contributions of the electro-electron (<i>e-e</i>) and the hole-hole (<i>h-h</i>) pairs to <i>j<sub>c</sub></i>—a feature to which no heed was paid earlier. The essence of our findings is that the <i>j<sub>c</sub></i>s of the two samples differ because they are characterized by different values of the <i>primary</i> variables <i>μ<sub>i</sub></i><sub> </sub>and <img src="Edit_e1b831e9-dc51-4c3b-bd84-fa905e3e62b5.png" alt="" />, where <img src="Edit_1f775a80-30ab-447d-861f-afb4ba8fba6a.png" alt="" /> is the effective mass of a charge-carrier and <i>m<sub>e</sub></i><sub> </sub>is the free-electron mass and <i>i</i> = 1 and 2 denote Sample 1 and Sample 2, respectively. In the scenario of the charge-carriers being <i>predominantly h-h</i> pairs, the values of these parameters are estimated to be: <i>μ</i><sub>1</sub> ≈ 12.3 meV, <i>η</i><sub>1</sub> ≈ 0.58;<i>μ</i><sub>2</sub> ≈ 22.7 meV, <i>η</i><sub>2</sub> ≈ 0.94. Following from these and similar estimates when the charge-carriers are <i>e-e</i> pairs, given below for each sample are the detailed results for the values of the <i>secondary</i> variables viz. the number density of the charge-carriers and their critical velocity, the number of occupied Landau levels and the magnetic interaction parameter. 展开更多
关键词 Chemical Potential- Temperature- and Applied Magnetic Field-Dependent Critical current Density of Superconductors Number Density Landau Quantization Law of Equipartition of Energy BI-2212
下载PDF
Control of magnetic levitation positioning stage with an eddy current damper
8
作者 王伟明 闪明才 +1 位作者 马树元 唐水源 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期315-320,共6页
To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic array... To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method. 展开更多
关键词 magnetic levitation(maglev) positioning stage eddy current damper nonlinear control feedback linearization
下载PDF
Solar Flare Activity and Variability of Electric Current Helicity
9
作者 KimJikSu Hong-QiZhang 《Chinese Journal of Astronomy and Astrophysics》 CSCD 北大核心 2002年第1期81-91,共11页
Recent study using Huairou vector magnetograph data shows that durlug flare activity, the current helicity exhibits rapid and substantial variations and, in some cases, a recovering phase. We considered various repres... Recent study using Huairou vector magnetograph data shows that durlug flare activity, the current helicity exhibits rapid and substantial variations and, in some cases, a recovering phase. We considered various representative the magnetic configurations. First, interacting twisted magnetic flux tubes are analyzed separately for positive, negative and mixed-sign helicity regions. The results show that the helicity during flares decreases in positive-sign, and increases in negative-sign regions. Then, flaring arcade also shows that the magnitude of the helicity decreases after flares. We also investigated current sheets formed by sheared magnetic field and showed that the current helicity (with either positive and negative signs) vanishes after reconnection. The emergence of twisted flux tubes which can trigger flares may be another source of flare-associated variability of current helicity. We demonstrate the relevance of current helicity to the description of flare activity by comparing its variation with that of shear angle in the active region AR 6891. 展开更多
关键词 Sun: flare -Sun: current helicity - Sun: magnetic shear
下载PDF
Current Status and Trends on NdFeB Magnetic Materials
10
《China Rare Earth Information》 2003年第3期1-4,共4页
关键词 NDFEB current Status and Trends on NdFeB Magnetic Materials IS into on
下载PDF
Screening-current-induced magnetic fields and strains in a compact REBCO coil in self field and background field
11
作者 Yufan Yan Donghui Jiang +4 位作者 Peng Song Jeonghwan Park Seungyong Hahn Yunfei Tan Timing Qu 《Superconductivity》 2024年第1期35-49,共15页
REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the gr... REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the great potentials,recent studies have highlighted the challenges posed by screening currents,which are featured by a highly nonuniform current distribution in the superconducting layer.In this paper,we report a comprehensive study on the behaviors of screening currents in a compact REBCO coil,specifically the screeningcurrent‐induced magnetic fields and strains.Experiments were carried out in the self‐generated magnetic field and a background field,respectively.In the self‐field condition,the full hysteresis of the magnetic field was obtained by applying current sweeps with repeatedly reversed polarity,as the nominal center field reached 9.17 T with a maximum peak current of 350 A.In a background field of 23.15 T,the insert coil generated a center field of 4.17 T with an applied current of 170 A.Ultimately,a total center field of 32.58 T was achieved before quench.Both the sequential model and the coupled model considering the perpendicular field modification due to conductor deformation are applied.The comparative study shows that,for this coil,the electromagnetic–mechanical coupling plays a trivial role in self‐field conditions up to 9 T.In contrast,with a high axial field dominated by the background field,the coupling effect has a stronger influence on the predicted current and strain distributions.Further discussions regarding the role of background field on the strains in the insert suggest potential design strategies to maximize the total center field. 展开更多
关键词 Electromagnetic-mechanical analysis High‐field insert coil REBCO coated conductor Screening‐current‐induced magnetic field Screening‐current‐induced stress
原文传递
Performance Study of a Self-Excitation Dual Stator Winding Induction Generator for Renewable Distributed Generation Systems
12
作者 Faris Hamoud Mamadou Lamine Doumbia Ahmed Cheriti 《Smart Grid and Renewable Energy》 2016年第6期197-215,共20页
Renewable power generation is a suitable technology used to deliver energy locally to customers especially in remote regions. Wind energy based on induction generator situates in a foreground position in the total ene... Renewable power generation is a suitable technology used to deliver energy locally to customers especially in remote regions. Wind energy based on induction generator situates in a foreground position in the total energy produced using renewable sources. In the last few decades, a new self- excitation generator was based on multi-stator induction strongly emerges. This article presents a systematic modelling, a detailed analysis and the performance analysis of self-excitation dual stator winding induction generator (SE-DSWIG). The modelling of the SE-DSWIG was done with taking in account the common mutual leakage inductance between stators and the magnetizing inductance, which played a principal role in the stabilization of the output voltage in the steady state. The generator feeds the end user emulated by an inductive-resistive load. In order to simulate the weather conditions’ variation, a step change of the prime mover speed was applied on the SE-DSWIG. A passive series and shunt compensator was used to mitigate the voltage sag and swell appeared in the power system due to wind variation and the lack of reactive power consumed by the inductive load. 展开更多
关键词 magnetizing Inductance magnetizing current Voltage Mitigation SELF-EXCITATION Passive Compensator
下载PDF
Non-invasive electrical brain stimulation:from acute to late-stage treatment of central nervous system damage 被引量:4
13
作者 Petra Henrich-Noack Elena G.Sergeeva Bernhard A.Sabel 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1590-1594,共5页
Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no s... Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no surgery,and has significant beneficial effects.However,there are various technical approaches for NIBS which influence neuronal networks in significantly different ways.Transcranial direct current stimulation(t DCS),alternating current stimulation(ACS) and repetitive transcranial magnetic stimulation(r TMS) all have been applied to modulate brain activity in animal experiments under normal and pathological conditions.Also clinical trials have shown that t DCS,r TMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms.The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task,such as current type and strength,timing,distribution of current densities and electrode position.In this review,we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration,motor rehabilitation and cognitive enhancement. 展开更多
关键词 non-invasive brain stimulation transcranial direct current stimulation transcranial magnetic stimulation transorbital alternating current stimulation stroke trauma neuroprotection restoration of function
下载PDF
Anisotropic transport properties in the phase-separated La_(0.67)Ca_(0.33)MnO_3/NdGaO_3 (001) films
14
作者 张洪瑞 刘渊博 +3 位作者 王拴虎 洪德顺 吴文彬 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期401-406,共6页
The anisotropic transport property was investigated in a phase separation La(0.67)Ca(0.33)MnO3(LCMO) film grown on(001)-oriented Nd GaO3(NGO) substrate. It was found that the resistivity along the b-axis is ... The anisotropic transport property was investigated in a phase separation La(0.67)Ca(0.33)MnO3(LCMO) film grown on(001)-oriented Nd GaO3(NGO) substrate. It was found that the resistivity along the b-axis is much higher than that along the a-axis. Two resistivity peaks were observed in the temperature dependent measurement along the b-axis, one located at 91 K and the other centered at 165 K. Moreover, we also studied the response of the resistivities along the two axes to various electric currents, magnetic fields, and light illuminations. The resistivities along the two axes are sensitive to the magnetic field. However, the electric current and light illumination can influence the resistivity along the b-axis obviously, but have little effect on the resistivity along the a-axis. Based on these results, we believe that an anisotropicstrain-controlled MnO6 octahedra shear-mode deformation may provide a mechanism of conduction filaments paths along the a-axis, which leads to the anisotropic transport property. 展开更多
关键词 electronic transport magnetic field electric currents light illuminations
下载PDF
Observational Features of Large-Scale Structures as Revealed by the Catastrophe Model of Solar Eruptions
15
作者 Jun Lin National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2007年第4期457-476,共20页
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material throu... Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used. 展开更多
关键词 Sun: large-scale magnetic structures - Sun: eruptive processes - Sun: theory and observations - magnetic reconnection and current sheets
下载PDF
Superconducting Magnet of the Gyrotron for HL-2A ECRH System
16
作者 HUANG Mei KANG Zihua RAO Jun FENG Kun ZHANG Jinsong LEI Jianxin 《Southwestern Institute of Physics Annual Report》 2005年第1期60-62,共3页
In order to carry on ECRH experiments and research on HL-2A tokamak, two sets of 4 mm gyrotrons were imported from GYCOM. Each of them has a superconducting magnet system to offer a required magnetic field configurati... In order to carry on ECRH experiments and research on HL-2A tokamak, two sets of 4 mm gyrotrons were imported from GYCOM. Each of them has a superconducting magnet system to offer a required magnetic field configuration. In gyrotron, a strong magnetic field is necessary for electron beam to satisfy the electron cyclotron resonance condition and to excite one the eigemodes in the cavity. Its functions are: (I) to make electrons gyrate, ( 2 ) to offer enough adiabatic compression value to make electrons acquire strong transverse energy. During the period of adjustment, magnetic field distribution was measured. Meanwhile, operating current of superconducting magnet and operating frequency of gyrotron were determined. 展开更多
关键词 Superconducting magnet Operating current Power
下载PDF
Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode
17
作者 刘美琴 李博轮 +2 位作者 刘纯亮 Fuks MIKHAIL Edl SCHAMILOGLU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第1期64-70,共7页
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is appli... Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious. 展开更多
关键词 secondary electron and backscattered electron emission relativistic magnetron mode competition critical magnetic field output power anode current electronic efficiency transparent cathode solid cathode
下载PDF
Clinical efficacies of treating refractory insomnia patients with estazolam plus alternating current magnetic field 被引量:2
18
作者 WANG Zhi-zhong WANG Ya-ping +1 位作者 WAN Jun-ping WANG Jing 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第17期3175-3176,共2页
As one of common physical and mental ailments, insomnia may cause serious adverse effects on a patient's daily life. And serious accidents occur in long-term cases.1 Despite comprehensive treatments, 9.38%-17.0% of... As one of common physical and mental ailments, insomnia may cause serious adverse effects on a patient's daily life. And serious accidents occur in long-term cases.1 Despite comprehensive treatments, 9.38%-17.0% of the treated insomniacs fail to benefit at all. Thus the term of "refractory insomnia" has been coined.24 At present, there is no literature reporting the roles of estazolam plus alternating current magnetic field (ACMF) for treating insomnia. In the present study, estazolam plus ACMF was employed for the patients with refractory insomnia so as to explore the clinical efficacies of such a combined modality. 展开更多
关键词 ESTAZOLAM alternating current magnetic field refractory insomnia Pittsburg sleep quality index
原文传递
Therapeutic Efficacy of Neurostimulation for Depression:Techniques, Current Modalities, and Future Challenges 被引量:8
19
作者 Hafsah Akhtar Faiza Bukhari +2 位作者 Misbah Nazir Muhammad Nabeel Anwar Adeeb Shahzad 《Neuroscience Bulletin》 SCIE CAS CSCD 2016年第1期115-126,共12页
Depression is the most prevalent debilitating mental illness; it is characterized as a disorder of mood, cognitive function, and neurovegetative function. About one in ten individuals experience depression at some sta... Depression is the most prevalent debilitating mental illness; it is characterized as a disorder of mood, cognitive function, and neurovegetative function. About one in ten individuals experience depression at some stage of their lives. Antidepressant drugs are used to reduce the symptoms but relapse occurs in ~ 20% of patients. However, alternate therapies like brain stimulation techniques have shown promising results in this regard. This review covers the brain stimulation techniques electroconvulsive therapy, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, vagus nerve stimulation, and deep brain stimulation, which are used as alternatives to antide- pressant drugs, and elucidates their research and clinical outcomes. 展开更多
关键词 DEPRESSION Electroconvulsive therapyTranscranial direct current stimulation - Repetitivetranscranial magnetic stimulation ~ Magnetic seizuretherapy . Vagus nerve stimulation. Deep brainstimulation Treatment-resistant depression
原文传递
IEC61850 standard-based harmonic blocking scheme for power transformers 被引量:9
20
作者 Senthil Krishnamurthy Bwandakassy Elenga Baningobera 《Protection and Control of Modern Power Systems》 2019年第1期123-137,共15页
Transformer Differential and overcurrent schemes are traditionally used as main and backup protection respectively. The differential protection relay (SEL487E) has dedicated harmonic restraint function which blocks th... Transformer Differential and overcurrent schemes are traditionally used as main and backup protection respectively. The differential protection relay (SEL487E) has dedicated harmonic restraint function which blocks the relay tripping during the transformer magnetizing inrush conditions. However, the backup overcurrent relay (SEL751A) applied to the transformer protection does not have harmonic restraint element and trip the overcurrent relay during the inrush conditions. Therefore, major contribution of this research work is the developed harmonic blocking scheme for transformer which uses element (87HB) of the transformer differential relay (SEL487E) to send an IEC61850 GOOSE-based harmonic blocking signal to the backup overcurrent relay (SEL751A) to inhibit from tripping during the transformer magnetizing inrush current conditions. The simulation results proved that IEC61850 standard-based protection scheme is faster than the hardwired signals. Therefore, the speed and reliability of the transformer scheme are improved using the IEC61850 standard-based GOOSE applications. 展开更多
关键词 Transformer protection Overcurrent protection Digital protection scheme current differential protection Transformer magnetizing inrush current Harmonic blocking IEC 61850 GOOSE message
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部