We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 ×...We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.展开更多
In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and t...In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.展开更多
Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock...Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock, with a 253. 7nm frequency quadrupled laser. Up to 1.7 × 10^6 (202Hg) or 1.5 × 10^6 (199Hg) atoms can be captured, and the atom temperature is lowered to 170μK (202Hg) or 50μK (199Hg). The cold atom signals of all six rich abundant isotopes are observed in this system.展开更多
Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control para...Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.展开更多
Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the tra...Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap(MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT,which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup.展开更多
Optical dipole trap(ODT)is becoming an important tool of manipulating neu-tral atoms.In this paper ODT is realized with a far-off resonant laser beam strongly fo-cused in the magneto-optical trap(MOT)of cesium atoms.T...Optical dipole trap(ODT)is becoming an important tool of manipulating neu-tral atoms.In this paper ODT is realized with a far-off resonant laser beam strongly fo-cused in the magneto-optical trap(MOT)of cesium atoms.The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the opti-cal dipole trap simultaneously.The advantages of our experimental scheme are discussed,and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.展开更多
We developed a new single-layer atom chip with an additional U-shaped current-carrying structure.The new U-shaped microwire creates optimized magnetic field distribution,which increases the trapping volume of a magnet...We developed a new single-layer atom chip with an additional U-shaped current-carrying structure.The new U-shaped microwire creates optimized magnetic field distribution,which increases the trapping volume of a magneto-optical trap(MOT) near the chip.Our approach allows one to localize more atoms,while a setup remains relatively simple (single-layer approach) and consumes low current (up to 10 A). The total number of trapped^(87)Rb atoms in our setup is 5×10^(7).展开更多
A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom ste...A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom steps and photon anti-bunching are observed by a photon-counting-based HBT system using fluorescence light. The average atom dwelling time in the FORT is about 9 s. To reduce the background noise in the detection procedure we employ a weak probe laser tuned to the D1 line to il- lurninate the single atom from the direction perpendicular to the large-numerical-aperture collimation system. The second or- der degree of coherence g(2)(r)=0.12_+0.02 is obtained directly from the fluorescence light of the single atom without deducting the background. The background light has been suppressed to 10 counts per 50 ms, which is much lower compared with the reported results. The measured g(2)(r) is in good agreement with theoretical analysis. The system provides a simple and effi- cient method to manipulate and measure single neutral atoms, and opens a way to create an efficient controlled single-photon source.展开更多
Doppler cooling of^(88)Sr atoms is studied in the presence of off-resonant red-detuned fluctuating laser fields.Using a semi-classical approach,we show that the relevant physical quantities in the cooling process,such...Doppler cooling of^(88)Sr atoms is studied in the presence of off-resonant red-detuned fluctuating laser fields.Using a semi-classical approach,we show that the relevant physical quantities in the cooling process,such as optical forces,the damping coefficient,Doppler temperature,and atom number in the trap,are strongly affected by the laser amplitude and phase fluctuations.We find that the Doppler cooling limit is higher than the predicted Doppler theory for non-fluctuating lasers.This implies an additional heating mechanism exists due to the laser fluctuations.Furthermore,our numerical analysis shows that the effect of laser power stability on reducing the number of trapped atoms in a magneto-optical trap is more substantial than the effect of laser linewidth.展开更多
基金Project supported by the Natural Science Foundation of China (Grant Nos 60578018 10434080, and 10374062), the Sino-Russia Joint Project (NSFC-RFBR), by the Key Scientific Project of the Education Ministry of China (Grant No 204019), the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No 705010) and the Program for Innovative Research Team in University (IRT0516) from the Education Ministry of China, and also by the Research Funds for Youth Academic Leaders of Shanxi Province.
文摘We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB921603)the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12490)+1 种基金the National Natural Science Foundation of China (Grant Nos.10934004,60978001,60978018,60808009,61078001,and 61008012)the Natural Science Foundation of Shanxi Province,China (Grant No. 2011011004)
文摘In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.
基金Supported by the National Natural Science Foundation of China under Grant No 91436105the National Basic Research Program of China under Grant No 2011CB921504the Research Project of Shanghai Science and Technology Commission under Grant No 09DJ1400700
文摘Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock, with a 253. 7nm frequency quadrupled laser. Up to 1.7 × 10^6 (202Hg) or 1.5 × 10^6 (199Hg) atoms can be captured, and the atom temperature is lowered to 170μK (202Hg) or 50μK (199Hg). The cold atom signals of all six rich abundant isotopes are observed in this system.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z319)the National Basic Research Program of China (Grant No. 2006CB921603)+4 种基金the National Natural Science Foundation of China (Grant Nos. 61008012,11074154,10934004,60978018,60978001,and 60808009)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)the National Natural Science Foundation for Excellent Research Team (Grant No. 60821004)the New Teacher Foundation of the Ministry of Education of China (Grant No. 20101401120004)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)
文摘Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.
基金Project supported by the Fundamental Research Funds for the Central Universities of China
文摘Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap(MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT,which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.10434080,10374062,60578018)the Shanxi Bajianrencai Program,the Cultivation Fund of the Key Scientific and Technical Innovation Project(Grant No.705010)the Program for Changjiang Scholars and Innovative Research Team in the University(IRT0516)of the Ministry of Education of China.
文摘Optical dipole trap(ODT)is becoming an important tool of manipulating neu-tral atoms.In this paper ODT is realized with a far-off resonant laser beam strongly fo-cused in the magneto-optical trap(MOT)of cesium atoms.The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the opti-cal dipole trap simultaneously.The advantages of our experimental scheme are discussed,and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.
基金supported by the Russian Science Foundation (No.23-22-00255)。
文摘We developed a new single-layer atom chip with an additional U-shaped current-carrying structure.The new U-shaped microwire creates optimized magnetic field distribution,which increases the trapping volume of a magneto-optical trap(MOT) near the chip.Our approach allows one to localize more atoms,while a setup remains relatively simple (single-layer approach) and consumes low current (up to 10 A). The total number of trapped^(87)Rb atoms in our setup is 5×10^(7).
基金supported by the State Basic Key Research Program of China (Grant No. 2012CB921601)China National Funds for Distinguished Young Scientists (Grant No. 11125418)the National Natural Science Foundation of China (Grant Nos. 10974125,61121064 and60978017)
文摘A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom steps and photon anti-bunching are observed by a photon-counting-based HBT system using fluorescence light. The average atom dwelling time in the FORT is about 9 s. To reduce the background noise in the detection procedure we employ a weak probe laser tuned to the D1 line to il- lurninate the single atom from the direction perpendicular to the large-numerical-aperture collimation system. The second or- der degree of coherence g(2)(r)=0.12_+0.02 is obtained directly from the fluorescence light of the single atom without deducting the background. The background light has been suppressed to 10 counts per 50 ms, which is much lower compared with the reported results. The measured g(2)(r) is in good agreement with theoretical analysis. The system provides a simple and effi- cient method to manipulate and measure single neutral atoms, and opens a way to create an efficient controlled single-photon source.
文摘Doppler cooling of^(88)Sr atoms is studied in the presence of off-resonant red-detuned fluctuating laser fields.Using a semi-classical approach,we show that the relevant physical quantities in the cooling process,such as optical forces,the damping coefficient,Doppler temperature,and atom number in the trap,are strongly affected by the laser amplitude and phase fluctuations.We find that the Doppler cooling limit is higher than the predicted Doppler theory for non-fluctuating lasers.This implies an additional heating mechanism exists due to the laser fluctuations.Furthermore,our numerical analysis shows that the effect of laser power stability on reducing the number of trapped atoms in a magneto-optical trap is more substantial than the effect of laser linewidth.