The paper presents a novel configuration in order to improve the compactness and manufacturing cost of magneto-rheological material(or fluid)based brakes(MRB in short).In conventional configurations of MRBs,the coil i...The paper presents a novel configuration in order to improve the compactness and manufacturing cost of magneto-rheological material(or fluid)based brakes(MRB in short).In conventional configurations of MRBs,the coil is normally wound on a nonmagnetic bobbin which is placed on the housing.This causes difficulties in manufacturing of the brake and the bottle-neck problem of magnetic circuit.In the proposed configuration,the coil is wound directly on the inner cylinder of the housing.In this case,the inner cylinder of the housing should be designed in a special shape that maximizes the magnetic flux across the MR fluid(MRF)duct.After proposing of the new configuration of the MRBs,the modeling of the MRBs is performed based on Bingham rheological model of the MRF.An optimal design of the proposed MRBs and conventional MRBs is then performed based on finite element analysis results of magnetic circuit of the MRBs.A comparative work between the optimal parameters of the proposed MRBs and conventional MRBs is conducted and the advanced performance characteristics of the proposed MRBs are investigated.展开更多
基金Item Sponsored by National Research Foundation of Korea (NRF) Grant Funded by Korea Government (MEST) (No.2010-0015090)
文摘The paper presents a novel configuration in order to improve the compactness and manufacturing cost of magneto-rheological material(or fluid)based brakes(MRB in short).In conventional configurations of MRBs,the coil is normally wound on a nonmagnetic bobbin which is placed on the housing.This causes difficulties in manufacturing of the brake and the bottle-neck problem of magnetic circuit.In the proposed configuration,the coil is wound directly on the inner cylinder of the housing.In this case,the inner cylinder of the housing should be designed in a special shape that maximizes the magnetic flux across the MR fluid(MRF)duct.After proposing of the new configuration of the MRBs,the modeling of the MRBs is performed based on Bingham rheological model of the MRF.An optimal design of the proposed MRBs and conventional MRBs is then performed based on finite element analysis results of magnetic circuit of the MRBs.A comparative work between the optimal parameters of the proposed MRBs and conventional MRBs is conducted and the advanced performance characteristics of the proposed MRBs are investigated.