期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
The magnetic properties and magnetocaloric effects in binary R-T(R = Pr,Gd,Tb,Dy,Ho,Er,Tm;T = Ga,Ni,Co,Cu)intermetallic compounds 被引量:5
1
作者 郑新奇 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期1-41,共41页
In this paper, we review the magnetic properties and magnetocaloric effects(MCE) of binary R–T(R = Pr, Gd, Tb,Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds(including RGa series, RNi series, R_(12... In this paper, we review the magnetic properties and magnetocaloric effects(MCE) of binary R–T(R = Pr, Gd, Tb,Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds(including RGa series, RNi series, R_(12)Co_7 series, R_3 Co series and RCu_2series), which have been investigated in detail in the past several years. The R–T compounds are studied by means of magnetic measurements, heat capacity measurements, magnetoresistance measurements and neutron powder diffraction measurements. The R–T compounds show complex magnetic transitions and interesting magnetic properties.The types of magnetic transitions are investigated and confirmed in detail by multiple approaches. Especially, most of the R–T compounds undergo more than one magnetic transition, which has significant impact on the magnetocaloric effect of R–T compounds. The MCE of R–T compounds are calculated by different ways and the special shapes of MCE peaks for different compounds are investigated and discussed in detail. To improve the MCE performance of R–T compounds,atoms with large spin(S) and atoms with large total angular momentum(J) are introduced to substitute the related rare earth atoms. With the atom substitution, the maximum of magnetic entropy change(?SM), refrigerant temperature width(Twidth)or refrigerant capacity(RC) is enlarged for some R–T compounds. In the low temperature range, binary R–T(R = Pr, Gd,Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds(including RGa series, RNi series,R_(12)Co_7 series, R_3 Co series and RCu_2series) show excellent performance of MCE, indicating the potential application for gas liquefaction in the future. 展开更多
关键词 magnetocaloric effect magnetic entropy change magnetic property neutron diffraction magnetic structure
下载PDF
Observation of giant magnetocaloric effect under low magnetic fields in EuTi_(1-x)Co_xO_3
2
作者 孙启磊 莫兆军 +6 位作者 沈俊 黎玉进 李兰 张君凯 刘国栋 唐成春 孟凡斌 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期475-480,共6页
The magnetic properties and magnetocaloric effect(MCE) in EuTi1-xCoxO3(x = 0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti^4+ ions were substituted by Co2+ions, the delicate balance was... The magnetic properties and magnetocaloric effect(MCE) in EuTi1-xCoxO3(x = 0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti^4+ ions were substituted by Co2+ions, the delicate balance was changed between antiferromagnetic(AFM) and ferromagnetic(FM) phases in the EuTiO3 compound. In EuTi1-xCoxO3 system, a giant reversible MCE and large refrigerant capacity(RC) were observed without hysteresis. The values of -△SM^max were evaluated to be around 10 J·kg^-1·K^-1 for EuTi0.95Co0.05O3 under a magnetic field change of 10 kOe. The giant reversible MCE and large RC suggests that EuTi1-xCoxO3 series could be considered as good candidate materials for low-temperature and low-field magnetic refrigerant. 展开更多
关键词 magnetocaloric effect magnetic entropy change magnetic phase transformation
下载PDF
Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12(x=0,1.0,1.5,2.0,and 2.5)ferromagnetic shape memory alloys
3
作者 Ishfaq Ahmad Shah Najam ul Hassan +4 位作者 Abdur Rauf 刘俊 龚元元 徐桂舟 徐锋 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期428-432,共5页
An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replac... An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases. 展开更多
关键词 Ni–Co–Mn–Sn alloy magnetostructural transformation magnetocaloric effect magnetic entropy change
下载PDF
Magnetic properties and magnetocaloric effects in NaZn_(13)-type La(Fe,Al)(13)-based compounds 被引量:3
4
作者 沈保根 胡凤霞 +1 位作者 董巧燕 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期12-22,共11页
In this article, our recent progress concerning the effects of atomic substitution, magnetic field, and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed. With an incr... In this article, our recent progress concerning the effects of atomic substitution, magnetic field, and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed. With an increase of the aluminum content, the compounds exhibit successively an antiferromagnetic (AFM) state, a ferromagnetic (FM) state, and a mictomagnetic state. Furthermore, the AFM coupling of LaFe13 -xAlx can be converted to an FM one by substituting Si for A1, Co for Fe, and magnetic rare-earth R for La, or introducing interstitial C or H atoms. However, low doping levels lead to FM clusters embedded in an AFM matrix, and the resultant compounds can undergo, under appropriate applied fields, first an AFM-FM and then an FM-AFM phase transition while heated, with significant magnetic relaxation in the vicinity of the transition temperature. The Curie temperature of LaFe13-xAlx can be shifted to room temperature by choosing appropriate contents of Co, C, or H, and a strong magnetocaloric effect can be obtained around the transition temperature. For example, for the LaFel 1.5All.5Co.2Hl.o compound, the maximal entropy change reaches 13.8 J.kg-1.K-1 for a field change of 0-5 T, occurring around room temperature. It is 42% higher than that of Gd, and therefore, this compound is a promising room-temperature magnetic refrigerant. 展开更多
关键词 La(Fe Al)13 compounds magnetocaloric effect magnetic entropy change magnetic phase transition
下载PDF
Magnetocaloric effect of (Gd_(1-x)Nd_x)Co_2 alloys in low magnetic field 被引量:1
5
作者 CHEN Xiang ZHUANG Yinghong +2 位作者 YAN Jialin ZHOU Kaiwen LI Kefeng 《Rare Metals》 SCIE EI CAS CSCD 2008年第4期350-353,共4页
The phases and magnetocaloric effect in the alloys (Gd1-xNdx)Co2 with x = 0, 0.1, 0.2, 0.3, and 0.4 were investigated by X-ray diffraction analysis and magnetization measurement. The samples are single phase with a ... The phases and magnetocaloric effect in the alloys (Gd1-xNdx)Co2 with x = 0, 0.1, 0.2, 0.3, and 0.4 were investigated by X-ray diffraction analysis and magnetization measurement. The samples are single phase with a cubic MgCu2-type structure. The To decreases obviously with increasing Nd content from 404 K of the alloy with x = 0 to 272 K of the alloy with x = 0.4; forx = 0.3, the To is 296 K, which is near room temperature. In the samples (Gd1-xNdx)Co2 with x = 0.0, 0.1, 0.2, 0.3, and 0.4, the maximum magnetic entropy change is 1.471, 1.228, 1.280, 1.381 and 1.610 J·kg^-1·K^-1, respectively, in the applied field range of 0-2.0 T. The results of Arrott plots confirmed that the transition type were second order magnetic transition forx = 0, 0.3, and 0.4. 展开更多
关键词 magnetic refrigeration materials magnetocaloric effect magnetic entropy change phase transition
下载PDF
Magnetic properties and magnetocaloric effects in HoPd intermetallic 被引量:1
6
作者 莫兆军 沈俊 +4 位作者 高新强 刘瑶 吴剑峰 沈保根 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期345-348,共4页
A large reversible magnetocaloric effect accompanied by a second order magnetic phase transition from PM to FM is observed in the Ho Pd compound. Under the magnetic field change of 0–5 T, the magnetic entropy change-... A large reversible magnetocaloric effect accompanied by a second order magnetic phase transition from PM to FM is observed in the Ho Pd compound. Under the magnetic field change of 0–5 T, the magnetic entropy change-ΔS max M and the refrigerant capacity RC for the compound are evaluated to be 20 J/(kg·K) and 342 J/kg, respectively. In particular,large-ΔS max M(11.3 J/(kg·K)) and RC(142 J/kg) are achieved under a low magnetic field change of 0–2 T with no thermal hysteresis and magnetic hysteresis loss. The large reversible magnetocaloric effect(both the large-ΔS M and the high RC)indicates that Ho Pd is a promising material for magnetic refrigeration at low temperature. 展开更多
关键词 magnetocaloric effect magnetic entropy change magnetic phase transformation
下载PDF
Magnetocaloric effect of (Gd_(1-x)Ce_x)Co_2 compounds in low magnetic fields
7
作者 CHEN Xiang ZHUANG Yinghong +1 位作者 FANG Fei YAN Jialin 《Rare Metals》 SCIE EI CAS CSCD 2009年第5期487-490,共4页
The phases in the compounds (Gd1-xCex)Co2 with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 were investigated by X-ray diffraction, and the magnetocaloric effect for x = 0-0.4 was studied by magnetization measurements. The sa... The phases in the compounds (Gd1-xCex)Co2 with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 were investigated by X-ray diffraction, and the magnetocaloric effect for x = 0-0.4 was studied by magnetization measurements. The samples are almost single phase with a cubic MgCu2-type structure for x = 0-0.5. The magnetization decreases with an increase in Ce content. There is almost no magnetic transition for x = 0.5 at 100-350 K. The Curie temperature (To) of the (Gd1-xCex)Co2compounds with x from 0.1 to 0.4 are 350, 344, 340, and 338 K respectively. The maximum magnetic entropy change is 2.34 J·kg^-1·K^-1 when x = 0.3. The results of Arrott plots show that the magnetic phase transition is second-order magnetic phase transition in these compounds. 展开更多
关键词 magnetic refrigeration materials magnetocaloric effect X-ray diffraction magnetic entropy change
下载PDF
Giant magnetocaloric effect in the Gd_5 Ge_(2.025)Si_(1.925)In_(0.05) compound 被引量:2
8
作者 E.Yzak I.Dincer Y.Elerman 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期517-522,共6页
The magnetocaloric properties of the GdsGe2.025Si1.925In0.05 compound have been studied by x-ray diffraction, magnetic and heat capacity measurements. Powder x-ray diffraction measurement shows that the compound has a... The magnetocaloric properties of the GdsGe2.025Si1.925In0.05 compound have been studied by x-ray diffraction, magnetic and heat capacity measurements. Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Cd5Ge2Si2-type structure and a small quantity of Gds(Ge,Si)3-type phase at room temperature. At about 270 K, this compound shows a first order phase transition. The isothermal magnetic entropy change (△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change (△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data. The maximum △SM is -13.6 J·kg^-1.K^- 1 and maximum ATad is 13 K for the magnetic field change of 0 5 T. The Debye temperature (θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV.atom from the low temperature zero-field heat-capacity data. A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925In0.05 compound an attractive candidate for a magnetic refrigerant. 展开更多
关键词 magnetic properties magnetocaloric effect isothermal magnetic entropy change adia-batic temperature change
下载PDF
Research Advance on Magnetocaloric Effect of La-Fe-M(Al, Si) Compounds
9
作者 肖素芬 陈云贵 +2 位作者 郝春 吴金平 涂铭旌 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第2期187-192,共6页
Recent research progress on magnetocaloric effect of La-Fe-M (M = Al, Si) compounds was presented. La-Fe-M (M = Al, Si) compounds of high Fe content are excellent soft magnetic materials with NaZn13 structure. The Cur... Recent research progress on magnetocaloric effect of La-Fe-M (M = Al, Si) compounds was presented. La-Fe-M (M = Al, Si) compounds of high Fe content are excellent soft magnetic materials with NaZn13 structure. The Curie temperature of the compounds can be increased by substituting small amount of Co for Si, Al. The La(Fe1-xCoy)(x)Si13-x compounds with an appropriate ratio of Co and Si can produce giant magnetocaloric effect comparable to that for Gd5Si2Ge2 at room temperature. The La (FexSi1-x)(13) doped with H can also produce giant magnetocaloric effect at room temperature, which is much greater than that for Gd. For La (FexSi1-x)(13) compounds with low Si or high Si contents. The nature of phase transition near Curie temperature induced by temperature and magnetic field was described in detail. 展开更多
关键词 metal materials magnetic refrigerating material magnetocaloric effect isothermal magnetic entropy change adiabatic temperature change La-Fe-M (M = Al Si) rare earths
下载PDF
Giant magnetocaloric effect in Tb_5Ge_(2-x)Si_(2-x)Mn_(2x) compounds
10
作者 E.Yzak B.Emre +1 位作者 Y.Elerman A.Ycel 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期542-548,共7页
The crystal structure, magnetic and magnetocaloric characteristics of the pseduo ternary compounds of TbsGe2-xSi2-xMn2x (0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements. ... The crystal structure, magnetic and magnetocaloric characteristics of the pseduo ternary compounds of TbsGe2-xSi2-xMn2x (0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements. The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements. Magnetic phase transitions were interpreted in terms of Landau theory. Maximum isothermal magnetic entropy change value (20.84 J-kg-1 -K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5T. 展开更多
关键词 magnetic properties magnetocaloric effect isothermal magnetic entropy change
下载PDF
Magnetic properties and magnetocaloric effects in Er_(1-x)Gd_xCoAl intermetallic compounds
11
作者 高新强 莫兆军 +4 位作者 沈俊 李珂 戴巍 吴剑峰 唐成春 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期508-512,共5页
The magnetism and magnetocaloric effect in Er1-xGdxCoAl(x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The Er1-xGdxCoAl compounds were synthesized by arc melting. With the increasing Gd content, the N′eel te... The magnetism and magnetocaloric effect in Er1-xGdxCoAl(x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The Er1-xGdxCoAl compounds were synthesized by arc melting. With the increasing Gd content, the N′eel temperature(T N)linearly increases from 14 K to 102 K, while the magnetic entropy change(-?S M) tends to decrease nonmonotonously.Under the field change from 0 T to 5 T, the-?S M of the compounds with x = 0.2–1 are stable around 10 J/kg·K, then a cooling platform between 20 K and 100 K can be formed by combining these compounds. For x = 0.6, 0.8, 1.0, the compounds undergo two successive magnetic transitions, one antiferromagnetism to ferromagnetism and the other ferromagnetism to paramagnetism, with increasing temperature. The two continuous magnetic transitions in this series are advantageous to broaden the temperature span of half-peak width(δT) in the-?S M–T curve and improve the refrigeration capacity. 展开更多
关键词 mgnetocaloric effect magnetic entropy change magnetic phase transformation
下载PDF
Magnetocaloric effects in RT X intermetallic compounds(R = Gd–Tm, T = Fe–Cu and Pd, X = Al and Si) 被引量:9
12
作者 张虎 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期138-164,共27页
The magnetocaloric effect(MCE) of RT Si and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RT X compounds exhibit various c... The magnetocaloric effect(MCE) of RT Si and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RT X compounds exhibit various crystal structures and magnetic properties, which then result in different MCE. Large MCE has been observed not only in the typical ferromagnetic materials but also in the antiferromagnetic materials. The magnetic properties have been studied in detail to discuss the physical mechanism of large MCE in RT X compounds. Particularly, some RT X compounds such as Er Fe Si,Ho Cu Si, Ho Cu Al exhibit large reversible MCE under low magnetic field change, which suggests that these compounds could be promising materials for magnetic refrigeration in a low temperature range. 展开更多
关键词 rare-earth compounds magnetocaloric effect magnetic entropy change magnetic property
下载PDF
Magnetocaloric Effect in Colossal Magnetoresistance Material (La_(0.6)Dy_(0.1))Sr_(0.3)MnO_3 被引量:1
13
作者 蔡之让 徐素军 +3 位作者 刘宁 孙勇 童伟 张裕恒 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第1期59-62,共4页
The magnetocaloric effect in the A-site doping colossal magnetoresistance material (La_(0.6)Dy_(0.1))Sr_(0.3)MnO_3 was studied. From the measurement and calculation of isothermal magnetization (M-H) curves under vario... The magnetocaloric effect in the A-site doping colossal magnetoresistance material (La_(0.6)Dy_(0.1))Sr_(0.3)MnO_3 was studied. From the measurement and calculation of isothermal magnetization (M-H) curves under various temperatures, a large magnetocaloric effect with ferromagnetic-paramagnetic transition, additional magnetism exchange action introduces additional magnetic entropy change was discovered. This result suggests that (La_(0.6)Dy_(0.1))Sr_(0.3)MnO_3 is a suitable candidate as working substance at room temperature in magnetic refrigeration technology. 展开更多
关键词 magnetic refrigeration magnetocaloric effect magnetic entropy change Curie temperature rare earths
下载PDF
Review of magnetocaloric effect in perovskite-type oxides 被引量:1
14
作者 钟伟 区泽棠 都有为 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期24-34,共11页
We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO3-type manganese oxides, A3B2OT-type two-layered perovskite oxides, and A2B'B''O6-type ordered double-perovskite oxides). Magnetic... We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO3-type manganese oxides, A3B2OT-type two-layered perovskite oxides, and A2B'B''O6-type ordered double-perovskite oxides). Magnetic entropy changes larger than those of gadolinium can be observed in polycrystalline La1-xCaxMnO3 and alkali-metal (Na or K) doped La0.8Ca0.2MnO3 perovskite-type manganese oxides. The large magnetic entropy change produced by an abrupt reduction of magnetization is attributed to the anomalous thermal expansion at the Curie temperature. Considerable mag- netic entropy changes can also be observed in two-layered perovskites Lal.6Cal.4Mn207 and La2.5-xK0.5+xMn2O7+6 (0 〈 x 〈 0.5), and double-perovskite Ba2Fe1+xMol-xO6 (0 〈 x 〈 0.3) near their respective Curie temperatures. Com- pared with rare earth metals and their alloys, the perovskite-type oxides are lower in cost, and they exhibit higher chemical stability and higher electrical resistivity, which together favor lower eddy-current heating. They are potential magnetic refrigerants at high temperatures, especially near room temperature. 展开更多
关键词 perovskite-type oxides magnetocaloric effect magnetic entropy change magnetic phase transi-tion
下载PDF
Influences of La and Ce doping on giant magnetocaloric effect of EuTiO 被引量:1
15
作者 莫兆军 孙启磊 +6 位作者 沈俊 杨墨 黎玉进 李岚 刘国栋 唐成春 孟凡斌 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期547-551,共5页
Giant reversible magnetocaloric effects and magnetic properties in Euo.9Ro.lTiO3 (R = La, Ce) are investigated. The antiferromagnetic ordering of pure EuTiO3 can significantly change to be ferromagnetic as substitut... Giant reversible magnetocaloric effects and magnetic properties in Euo.9Ro.lTiO3 (R = La, Ce) are investigated. The antiferromagnetic ordering of pure EuTiO3 can significantly change to be ferromagnetic as substitution of La (x = 0.1) and Ce (x = 0.1) ions for Eu2+ ions. The values of -ASM and RC are evaluated to be 10.8 J/(kg.K) and 51.8 J/kg for Euo.gCeo.lTiO3 and 11 J/(kg.K) and 39.3 J/kg for Euo.9Lao.lTiO3 at a magnetic field change of I0 kOe, respectively. The large low-field enhancements of --ASM and RC can be attributed to magnetic phase transition. The giant reversible MCE and large RC suggest that Euo.9Ro.ITiO3 (R = La, Ce) compounds could be promising materials in low temperature and low magnetic field refrigerants. 展开更多
关键词 magnetocaloric effect magnetic entropy change magnetic phase transformation
下载PDF
Low field induced giant anisotropic magnetocaloric effect in DyFeO_3 single crystal 被引量:2
16
作者 柯亚娇 张向群 +2 位作者 葛恒 马跃 成昭华 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期5-9,共5页
We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b ax... We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 k Oe. The large anisotropic magnetic entropy change is mainly accounted for the 4 f electron of rare-earth Dy^3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite Dy FeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region. 展开更多
关键词 magnetocaloric effect rotating field entropy change magnetocrystalline anisotropy DyFeO3 single crystal
下载PDF
Phase transition and magnetocaloric effect of Ni_(55.2)Mn_(18.6)Ga_(26.2-x)Gd_x (x=0,0.05,0.15) alloys
17
作者 鲍博 龙毅 +3 位作者 段静芳 吴光恒 叶荣昌 万发荣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期875-878,共4页
Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural an... Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural and magnetic transitions and transform from ferro-magnetic martensitic phase to paramagnetic austenitic phase during heating. Under a field of 2 T, the maximum magnetic entropy change -Delta S-M of Ni55.2Mn18.6Ga26.15Gd0.05 alloy was 7.7 J/kg.K at 317 K during heating and 8.6 J/kg.K at 314 K during cooling while it was 11.8 J/kg.K at 317 K in Ni55.2Mn18.6Ga26.05Gd0.15 alloy during heating. 展开更多
关键词 NIMNGA magnetocaloric effect (MCE) magnetic transition structural transition magnetic entropy change rare earths
下载PDF
Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx(x=1,2,3, and 4) alloys
18
作者 Ishfaq Ahmad Shah Najam ul Hassan +3 位作者 刘俊 龚元元 徐桂舟 徐锋 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期444-448,共5页
We investigate the influence of Sb-doping on the martensitic transformation and magnetocaloric effect in Mn(50)Ni(40)Sn(10-x)Sbx(x = 1, 2, 3, and 4) alloys. All the prepared samples exhibit a B2-type structure... We investigate the influence of Sb-doping on the martensitic transformation and magnetocaloric effect in Mn(50)Ni(40)Sn(10-x)Sbx(x = 1, 2, 3, and 4) alloys. All the prepared samples exhibit a B2-type structure with the space group F m3 m at room temperature. The substitution of Sb increases the valence electron concentration and decreases the unit cell volume. As a result, the magnetostructural transformation shifts rapidly towards higher temperatures as x increases.The changes in magnetic entropy under different magnetic field variations are explored around this transformation. The isothermal magnetization curves exhibit typical metamagnetic behavior, indicating that the magnetostructural transformation can be induced by a magnetic field. The tunable martensitic transformation and magnetic entropy changes suggest that Mn(50)Ni(40)Sn(10-x)Sbx alloys are attractive candidates for applications in solid-state refrigeration. 展开更多
关键词 Mn-rich Heusler alloys martensitic transformation magnetocaloric effect magnetic entropy change
下载PDF
Influence of the Erbium Substitution for Gd in Gd_5Si_(1.8)Ge_(2.2) Alloys on the Magnetocaloric Effect in Low-Field
19
作者 陈湘 李克峰 +1 位作者 马春华 庄应烘 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期117-120,共4页
The phases and magnetocaloric effect in the alloys (Gd1-xErx)5Si1.8Ge2.2 with x=0, 0.1, 0.2 and 0.3 were investigated by X-ray diffraction analysis and magnetization measurement. The samples were single phase with the... The phases and magnetocaloric effect in the alloys (Gd1-xErx)5Si1.8Ge2.2 with x=0, 0.1, 0.2 and 0.3 were investigated by X-ray diffraction analysis and magnetization measurement. The samples were single phase with the monoclinic Gd5Si2Ge2-type structure. With the increase of Er content, the Curie temperature (Tc) decreased obviously from 253 K of the alloy with x=0 to 114 K with x=0.3. The maximum magnetic entropy changed in the samples of (Gd1-xErx)5Si1.8Ge2.2 with x=0.0, 0.1, 0.2 and 0.3 were 6.88, 8.32, 9.59 and 10.24 J·kg-1·K-1 respectively in the applied field change of 0~2.0 T. 展开更多
关键词 (Gd1-xErx)5Si1.8Ge2.2 compounds magnetocaloric effects magnetic entropy changes rare earths
下载PDF
Improvement of the low-field-induced magnetocaloric effect in EuTiO3 compounds
20
作者 曾爽 姜文昊 +3 位作者 杨慧 莫兆军 沈俊 李岚 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期463-468,共6页
The magnetocaloric effect of Mn,Ni,and Mn-Ni-doped EuTiO3 compounds are studied in the near-liquid-helium-temperature range.The Eu(Ti0.9375Mn0.0625)O3,Eu(Ti0.975Ni0.025)O3,and Eu(Ti0.9125Mn0.0625Ni0.025)O3 are prepare... The magnetocaloric effect of Mn,Ni,and Mn-Ni-doped EuTiO3 compounds are studied in the near-liquid-helium-temperature range.The Eu(Ti0.9375Mn0.0625)O3,Eu(Ti0.975Ni0.025)O3,and Eu(Ti0.9125Mn0.0625Ni0.025)O3 are prepared by the sol-gel method.The Eu(Ti0.9375Mn0.0625)O3 and Eu(Ti0.9125Mn0.0625Ni0.025)O3 exhibit ferromagnetism with second-order phase transition,and the Eu(Ti0.975Ni0.025)O3 displays antiferromagnetic behavior.Under the magnetic field change of 10 kOe(1 Oe=79.5775 Am-1),the values of magnetic entropy change are 8.8 Jkg-1K-1,12 Jkg-1K-1,and 10.9 Jkg-1K-1 for Eu(Ti0.9375Mn0.0625)O3,Eu(Ti0.975Ni0.025)O3,and Eu(Ti0.9125Mn0.0625Ni0.025)O3,respectively.The co-substitution of Mn and Ni can not only improve the magnetic entropy change,but also widen the refrigeration temperature window,which greatly enhances the magnetic refrigeration capacity.Under the magnetic field change of 10 kOe,the refrigerant capacity value of Eu(Ti0.9125Mn0.0625Ni0.025)O3 is 62.6 Jkg-1 more than twice that of EuTiO3(27 Jkg-1),indicating that multi-component substitution can lead to better magnetocaloric performance. 展开更多
关键词 magnetocaloric effect magnetic entropy change magnetic phase transformation
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部