期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
Structure, magnetism and magnetocaloric effects in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds
1
作者 郝志红 刘辉 张聚国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期575-579,共5页
We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagona... We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators. 展开更多
关键词 magnetic materials cryogenic magnetic refrigeration magnetic phase transition magnetocaloric effects
下载PDF
Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys 被引量:1
2
作者 张成亮 王敦辉 +3 位作者 陈健 王廷志 谢广喜 朱纯 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期8-11,共4页
The magnetic phase transition and magnetocaloric effects in Fe-doped MnNiGe alloys are investigated. The substitution of Fe for Ni decreases the structural transition temperature remarkably, resulting in the magnetost... The magnetic phase transition and magnetocaloric effects in Fe-doped MnNiGe alloys are investigated. The substitution of Fe for Ni decreases the structural transition temperature remarkably, resulting in the magnetostructural transition occurring between antiferromagnetic and ferromagnetic states in MnNil_χFexGe alloy. Owing to the enhanced ferromagnetic coupling induced by the substitution of Fe, metamagnetic behaviour is also observed in TiNiSi-type phase of MnNil-xFezGe alloys at temperature below the structural transition temperature. 展开更多
关键词 magnetostructural transition metamagnetic magnetocaloric effect
下载PDF
Order of magnetic transition and large magnetocaloric effect in Er_3Co 被引量:1
3
作者 沈俊 赵金良 +3 位作者 胡凤霞 吴剑峰 孙继荣 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期427-431,共5页
We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curve... We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er3Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around Tc is found to result from the second-order ferromagnetic-to-paramagnetic transition. The max- imal value of magnetic entropy change is 24.5 J/kg.K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0-5 T. Large reversible MEC and RC indicate the potentiality of Er3Co as a candidate magnetic refrigerant at low temperatures. 展开更多
关键词 Er3Co compound magnetocaloric effect magnetic transition
下载PDF
Phase transition and magnetocaloric effect of Ni_(55.2)Mn_(18.6)Ga_(26.2-x)Gd_x (x=0,0.05,0.15) alloys
4
作者 鲍博 龙毅 +3 位作者 段静芳 吴光恒 叶荣昌 万发荣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期875-878,共4页
Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural an... Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural and magnetic transitions and transform from ferro-magnetic martensitic phase to paramagnetic austenitic phase during heating. Under a field of 2 T, the maximum magnetic entropy change -Delta S-M of Ni55.2Mn18.6Ga26.15Gd0.05 alloy was 7.7 J/kg.K at 317 K during heating and 8.6 J/kg.K at 314 K during cooling while it was 11.8 J/kg.K at 317 K in Ni55.2Mn18.6Ga26.05Gd0.15 alloy during heating. 展开更多
关键词 NIMNGA magnetocaloric effect (MCE) magnetic transition structural transition magnetic entropy change rare earths
下载PDF
Magnetostructural transformation and magnetocaloric effect in Mn_(48-x)V_xNi_(42)Sn_(10) ferromagnetic shape memory alloys
5
作者 Najam ul Hassan Ishfaq Ahmad Shah +4 位作者 Tahira Khan 刘俊 龚元元 缪雪飞 徐锋 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期439-443,共5页
In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48-xVxNi42Sn10(x=0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement ... In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48-xVxNi42Sn10(x=0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0-5 T are 15.2, 18.8, and 24.3 J.kg^-1.K^-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48-xVxNi42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. 展开更多
关键词 magnetostructural coupling field driving capacity refrigeration capacity magnetocaloric effect
下载PDF
Magnetic transition and large reversible magnetocaloric effect in EuCu_(1.75)P_2 compound
6
作者 霍德璇 廖罗兵 +2 位作者 李领伟 李妙 钱正洪 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期460-463,共4页
The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase ... The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg^-1·K-1 and 13.3 J·kg^-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed. 展开更多
关键词 EuCu1.75P2 compound magnetocaloric effect magnetic transition critical behavior
下载PDF
Determination of the magnetocaloric effect associated with martensitic transition in Ni_(46)Cu_(4)Mn_(38)Sn_(12) and Ni_(50)CoMn_(34)In_(15) Heusler alloys
7
作者 李哲 敬超 +2 位作者 张浩雷 曹世勋 张金仓 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期471-475,共5页
This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn38Sn12 and NisoCoMn34In]5 Heusler alloy. Through heat... This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn38Sn12 and NisoCoMn34In]5 Heusler alloy. Through heat capacity measurements, it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases, as well as thermal hysteresis during martensitic transition. However, careful study indicates that the spurious results during martensitic transition can be removed using a Clausius Clapeyron equation based on magnetization measurements. 展开更多
关键词 Heusler alloy martensitic transition magnetocaloric effect
下载PDF
Magnetic phase transition and magnetocaloric effect in Mn_(1-x)Zn_xCoGe alloys
8
作者 沈程娟 刘强 +2 位作者 龚元元 王敦辉 都有为 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期428-431,共4页
The magnetic phase transition and magnetocaloric effect are studied in a series of Mn1-xZnxCoGe (x = 0.0l, 0.02, 0.04, and 0.08) alloys. By introducing a small quantity of Zn element, the structural transformation t... The magnetic phase transition and magnetocaloric effect are studied in a series of Mn1-xZnxCoGe (x = 0.0l, 0.02, 0.04, and 0.08) alloys. By introducing a small quantity of Zn element, the structural transformation temperature of the MnCoGe alloy is greatly reduced and a first-order magnetostructural transition is observed. Further increasing the Zn concentration results in a second-order ferromagnetic transition. Large room-temperature magnetocaloric effects with small magnetic hysteresis are obtained in alloys with x = 0.01 and 0.02, which suggests their potential application in magnetic refrigeration. 展开更多
关键词 magnetocaloric effect magnetostructural transition
下载PDF
Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
9
作者 丁燕红 孟凡振 +2 位作者 王利晨 刘若水 沈俊 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期502-505,共4页
Rare-earth(R)-based materials with large reversible magnetocaloric effect(MCE)are attracting much attention as the promising candidates for low temperature magnetic refrigeration.In the present work,the magnetic prope... Rare-earth(R)-based materials with large reversible magnetocaloric effect(MCE)are attracting much attention as the promising candidates for low temperature magnetic refrigeration.In the present work,the magnetic properties and MCE of DyNiGa compound with TiNiSi-type orthorhombic structure are studied systematically.The DyNiGa undergoes a magnetic transition from antiferromagnetic(AFM)to paramagnetic state with Néel temperature TN=17 K.Meanwhile,it does not show thermal and magnetic hysteresis,revealing the perfect thermal and magnetic reversibility.Moreover,the AFM state can be induced into a ferromagnetic state by a relatively low field,and thus leading to a large reversible MCE,e.g.,a maximum magnetic entropy change(-ΔSM)of 10 J/kg·K is obtained at 18 K under a magnetic field change of 5 T.Consequently,the large MCE without thermal or magnetic hysteresis makes the DyNiGa a competitive candidate for magnetic refrigeration of hydrogen liquefaction. 展开更多
关键词 DyNiGa ANTIFERROMAGNETIC magnetocaloric effect first-order phase transition
下载PDF
Tuning Martensitic Phase Transition by Non-Magnetic Atom Vacancy in MnCoGe Alloys and Related Giant Magnetocaloric Effect
10
作者 包立夫 黄文登 任亚杰 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期161-164,共4页
The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. ... The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. The introduction of non-magnetic atom vacancy leads to the decrease of the martensitic transition temperature and realizes a temperature window where magnetic and martensitic phase transitions can be tuned together. Moreover, the giant magnetocaloric effect accompanied with the coupled magnetic-structural transition is ob- tained. It is observed that the peak values of magnetic entropy change of MnCoGeo.97 are about -13.9, -35.1 and -47.4J.kg-1K-1 for △H = 2, 5, 7T, respectively. 展开更多
关键词 of on for by Tuning Martensitic Phase transition by Non-Magnetic Atom Vacancy in MnCoGe Alloys and Related Giant magnetocaloric effect in is that
下载PDF
Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12(x=0,1.0,1.5,2.0,and 2.5)ferromagnetic shape memory alloys
11
作者 Ishfaq Ahmad Shah Najam ul Hassan +4 位作者 Abdur Rauf 刘俊 龚元元 徐桂舟 徐锋 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期428-432,共5页
An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replac... An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases. 展开更多
关键词 Ni–Co–Mn–Sn alloy magnetostructural transformation magnetocaloric effect magnetic entropy change
下载PDF
Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound 被引量:1
12
作者 王一旭 张虎 +7 位作者 吴美玲 陶坤 李亚伟 颜天宝 龙克文 龙腾 庞铮 龙毅 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期398-402,共5页
The magnetic properties and magnetocaloric effects (MCE) of HoNiGa compound are investigated systematically. The HoNiGa exhibits a weak antiferromagnetic (AFM) ground state below the Neel temperature TN of 10 K, a... The magnetic properties and magnetocaloric effects (MCE) of HoNiGa compound are investigated systematically. The HoNiGa exhibits a weak antiferromagnetic (AFM) ground state below the Neel temperature TN of 10 K, and the AFM ordering could be converted into ferromagnetic (FM) ordering by external magnetic field. Moreover, the fie/d-induced FM phase exhibits a high saturation magnetic moment and a large change of magnetization around the transition temperature, which then result in a large MCE. A large -△SM of 22.0 J/kg K and a high RC value of 279 J/kg without magnetic hysteresis are obtained for a magnetic field change of 5 T, which are comparable to or even larger than those of some other magnetic refrigerant materials in the same temperature range. Besides, the μ0H2/3 dependence of |△SPKM| well follows the linear fitting according to the mean-field approximation, suggesting the nature of second-order FM-PM magnetic transition under high magnetic fields. The large reversible MCE induced by metamagnetic transition suggests that HoNiGa compound could be a promising material for magnetic refrigeration in low temperature range. 展开更多
关键词 rare-earth compound magnetocaloric effect metamagnetic transition
全文增补中
Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals 被引量:9
13
作者 李领伟 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期1-15,共15页
The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refr... The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. 展开更多
关键词 magnetocaloric effect rare earth based intermetallic compounds RENizB2C superconductors magnetic phase transition
下载PDF
Magnetic properties and magnetocaloric effects in NaZn_(13)-type La(Fe,Al)(13)-based compounds 被引量:3
14
作者 沈保根 胡凤霞 +1 位作者 董巧燕 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期12-22,共11页
In this article, our recent progress concerning the effects of atomic substitution, magnetic field, and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed. With an incr... In this article, our recent progress concerning the effects of atomic substitution, magnetic field, and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed. With an increase of the aluminum content, the compounds exhibit successively an antiferromagnetic (AFM) state, a ferromagnetic (FM) state, and a mictomagnetic state. Furthermore, the AFM coupling of LaFe13 -xAlx can be converted to an FM one by substituting Si for A1, Co for Fe, and magnetic rare-earth R for La, or introducing interstitial C or H atoms. However, low doping levels lead to FM clusters embedded in an AFM matrix, and the resultant compounds can undergo, under appropriate applied fields, first an AFM-FM and then an FM-AFM phase transition while heated, with significant magnetic relaxation in the vicinity of the transition temperature. The Curie temperature of LaFe13-xAlx can be shifted to room temperature by choosing appropriate contents of Co, C, or H, and a strong magnetocaloric effect can be obtained around the transition temperature. For example, for the LaFel 1.5All.5Co.2Hl.o compound, the maximal entropy change reaches 13.8 J.kg-1.K-1 for a field change of 0-5 T, occurring around room temperature. It is 42% higher than that of Gd, and therefore, this compound is a promising room-temperature magnetic refrigerant. 展开更多
关键词 La(Fe Al)13 compounds magnetocaloric effect magnetic entropy change magnetic phase transition
下载PDF
Magnetocaloric effect of (Gd_(1-x)Nd_x)Co_2 alloys in low magnetic field 被引量:1
15
作者 CHEN Xiang ZHUANG Yinghong +2 位作者 YAN Jialin ZHOU Kaiwen LI Kefeng 《Rare Metals》 SCIE EI CAS CSCD 2008年第4期350-353,共4页
The phases and magnetocaloric effect in the alloys (Gd1-xNdx)Co2 with x = 0, 0.1, 0.2, 0.3, and 0.4 were investigated by X-ray diffraction analysis and magnetization measurement. The samples are single phase with a ... The phases and magnetocaloric effect in the alloys (Gd1-xNdx)Co2 with x = 0, 0.1, 0.2, 0.3, and 0.4 were investigated by X-ray diffraction analysis and magnetization measurement. The samples are single phase with a cubic MgCu2-type structure. The To decreases obviously with increasing Nd content from 404 K of the alloy with x = 0 to 272 K of the alloy with x = 0.4; forx = 0.3, the To is 296 K, which is near room temperature. In the samples (Gd1-xNdx)Co2 with x = 0.0, 0.1, 0.2, 0.3, and 0.4, the maximum magnetic entropy change is 1.471, 1.228, 1.280, 1.381 and 1.610 J·kg^-1·K^-1, respectively, in the applied field range of 0-2.0 T. The results of Arrott plots confirmed that the transition type were second order magnetic transition forx = 0, 0.3, and 0.4. 展开更多
关键词 magnetic refrigeration materials magnetocaloric effect magnetic entropy change phase transition
下载PDF
Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds
16
作者 邹君鼎 沈保根 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第12期3843-3847,共5页
Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds are studied by DC magnetic measurement. With increasing content of Fe, the entropy changes decrease slightly, though the Curie temperature is tuned... Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds are studied by DC magnetic measurement. With increasing content of Fe, the entropy changes decrease slightly, though the Curie temperature is tuned from 231 K (x = 0) to 303 K (x = 0.1). Magnetic entropies of TbCo2 compound are calculated by using mean field approximation (MFA). Results estimated by using Maxwell relation are consistent with that of MFA calculation. It is shown that the entropy changes are mainly derived from the magnetic entropy changes. The lattice has almost no contribution to the entropy change in the vicinity of phase transition. 展开更多
关键词 magnetocaloric effect mean field approximation metamagnetic transition
下载PDF
Magnetocaloric effect in ErCo2 compound
17
作者 邹君鼎 沈保根 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第7期1817-1821,共5页
The ErCo2 compound is prepared by arc-melting and its entropy changes are calculated using Maxwell relation. Its entropy change reaches 38 J/(kg·K) and its refrigerant capacity achieves 291 J/kg at 0-5 T. The m... The ErCo2 compound is prepared by arc-melting and its entropy changes are calculated using Maxwell relation. Its entropy change reaches 38 J/(kg·K) and its refrigerant capacity achieves 291 J/kg at 0-5 T. The mean field approximation is used to calculate the magnetic entropy of ErCo2 compound. Results estimated by using the Maxwell relation deviate from mean field approximation calculations in ferrimagnetic state; however, the data obtained by the two ways are consistent in the vicinity of phase transition or at higher temperatures. This indicates that entropy changes are mainly derived from magnetic degree of freedom, and the lattice has almost no contribution to the entropy change in the vicinity of phase transition but its influence is obvious in the ferrimagnetic state below TC. 展开更多
关键词 magnetocaloric effect mean field approximation metamagnetic transition
下载PDF
Phase structure and magnetocaloric effect of (Tb_(1–x)Dy_x)Co_2 alloys
18
作者 庄应烘 陈湘 +2 位作者 周开文 李克峰 马春华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第5期749-752,共4页
Phase structure and magnetocaloric effect of (Tb1-xDyx)Co2 alloys with x=0, 0.2, 0.4, 0.6, 0.8, and 1.0 were investigated using X-ray diffraction analysis, differential thermal analysis, and magnetization measuremen... Phase structure and magnetocaloric effect of (Tb1-xDyx)Co2 alloys with x=0, 0.2, 0.4, 0.6, 0.8, and 1.0 were investigated using X-ray diffraction analysis, differential thermal analysis, and magnetization measurement. The samples were single phase with cubic MgCu2- type structure; with the increase of Dy content, Tc decreased from 240 K (TbCo2) to 130 K (DyCo2), and the maximum magnetic entropy change | △SM,max| increased from 3.133 to 8.176 J/kg-K under low magnetic field of 0-2 T. The Arrott plot and the change of |△SM,max| showed that magnetic phase transition from second order to first order occured with the increase of Dy content between x=-0.6 and 0.8. 展开更多
关键词 magnetic refrigeration materials magnetocaloric effect magnetic phase transition (Tb1-xDyx)Co2 alloys rare earths
下载PDF
Magnetocaloric effect study of SrFe_(0.8)Co_(0.2)O_3 single crystal prepared under high pressure
19
作者 夏海亮 秦晓梅 +4 位作者 杨俊叶 殷云宇 戴建洪 石旺舟 龙有文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期127-130,共4页
A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagn... A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagnetism tran- sition is found at about 270 K and this transition is a second-order one in nature as confirmed by Arrott plots. The saturated moment obtained at 2 K and 7 T is 3.63 μB/f.u. The maximal value of magnetic entropy change measured at 5 T is about 4.0 J·kg-1 ·K-1. The full wide at half maximum for a magnetic entropy change peak observed in SrFe0.8Co0.2O3 is considerably large. As a consequence, the relative cooling power value of SrFe0.8Co0.2O3 obtained at 5 T is 331 J/kg, which is greatly higher than those observed in other perovskite oxides. The present work therefore provides a promising candidate for magnetic refrigeration near room temperature. 展开更多
关键词 high pressure synthesis magnetocaloric effect ferromagnetic phase transition
下载PDF
Magnetic properties and magnetocaloric effects in(Ho_(1-x)Y_x)_5Pd_2 compounds 被引量:1
20
作者 武小飞 郭翠萍 +5 位作者 成钢 李长荣 王江 杜玉松 饶光辉 杜振民 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期293-299,共7页
The crystal structure, magnetic and magnetocaloric properties of(Ho_(1-x) Y_(0.5))_5 Pd_2 compounds are investigated. All the compounds crystallize in a cubic Dy_5 Pd_2-type structure with the space group Fd3 m and un... The crystal structure, magnetic and magnetocaloric properties of(Ho_(1-x) Y_(0.5))_5 Pd_2 compounds are investigated. All the compounds crystallize in a cubic Dy_5 Pd_2-type structure with the space group Fd3 m and undergo a second order transition from spin glass(SG) state to paramagnetic(PM) state. The spin glass transition temperatures T_g decrease from 26 K for x = 0 to 13 K for x = 0.5. In the PM region, the reciprocal susceptibilities for all the compounds obey the Curie–Weiss law. The paramagnetic Curie temperatures(θp) for Ho_5 Pd_2,(Ho_(0.75) Y_(0.25)_5 Pd_2, and(Ho_(0.5) Y_(0.5))_5 Pd_2 are determined to be 32 K, 30 K, and 22 K, respectively, and the corresponding effective magnetic moments(μeff) are10.8 μB/Ho, 10.3 μB/RE, and 7.5 μB/RE, respectively. Magnetocaloric effect(MCE) is anticipated according to the Maxwell relation, based on the isothermal magnetization curves. For a magnetic field change of 0–5 T, the maximum values of the isothermal magnetic entropy change-?SMof the(Ho_(1-x)Y_x)_5 Pd_2(x = 0, 0.25, and 0.5) compounds are determined to be 11.5 J·kg^(-1)·K^(-1), 11.1 J·kg^(-1)·K^(-1), and 8.9 K J·kg^(-1)·K^(-1), with corresponding refrigerant capacity values of 382.3 J·kg^(-1), 336.2 J·kg^(-1), and 242.5 J·kg^(-1), respectively. 展开更多
关键词 (Ho1-xYx)5Pd2 COMPOUNDS magnetic transition magnetocaloric effect
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部