Ternary FeCoNi metallic nanostructures have attracted significant attention due to their high saturation magnetization, unique mechanical properties, and large corrosion resistance. In this study, we report a controll...Ternary FeCoNi metallic nanostructures have attracted significant attention due to their high saturation magnetization, unique mechanical properties, and large corrosion resistance. In this study, we report a controlled synthesis of ternary FeCoNi nanocrystals using solution-based epitaxial core-shell nanotechnology. The thickness and stoichiometry of the FeCoNi nanocrystals affect their magnetic characteristics, which can be controlled by a phase transformation-induced tetragonal distortion. Furthermore, surface oxidation of the stoichiometry-controlled FeCoNi nanostructures can drastically enhance their magnetic coercivity (up to 8,881.60e for AuCu-FeCo), and optimize the AuCu-FeCo08Ni0.2 performance corresponding to the saturated magnetization of 134.4 emu-g-1 and coercivity of 4,036.70e, which opens the possibility of developing rare-earth free high energy nanomagnets.展开更多
基金S. R. thanks the financial support from the U.S. National Science Foundation (NSF) (No. NSF-DMR-1551948) (magnetically hard nanocrystals) and (No. NSF- CMMI-1553986) (nanomanufacturing).
文摘Ternary FeCoNi metallic nanostructures have attracted significant attention due to their high saturation magnetization, unique mechanical properties, and large corrosion resistance. In this study, we report a controlled synthesis of ternary FeCoNi nanocrystals using solution-based epitaxial core-shell nanotechnology. The thickness and stoichiometry of the FeCoNi nanocrystals affect their magnetic characteristics, which can be controlled by a phase transformation-induced tetragonal distortion. Furthermore, surface oxidation of the stoichiometry-controlled FeCoNi nanostructures can drastically enhance their magnetic coercivity (up to 8,881.60e for AuCu-FeCo), and optimize the AuCu-FeCo08Ni0.2 performance corresponding to the saturated magnetization of 134.4 emu-g-1 and coercivity of 4,036.70e, which opens the possibility of developing rare-earth free high energy nanomagnets.