In this letter, we investigate the magnetic and ferroelectric properties of polycrystalline MnW1-xMoxO4 (x = 0, 0.05, 0.10, 0.20) compounds. The substitution of nonmagnetic Mo6+ ions for W6+ ions modifies the magn...In this letter, we investigate the magnetic and ferroelectric properties of polycrystalline MnW1-xMoxO4 (x = 0, 0.05, 0.10, 0.20) compounds. The substitution of nonmagnetic Mo6+ ions for W6+ ions modifies the magnetic transition tem- peratures of MnW1-xMoxO4 by changing the Mn-O-Mn bond. As a result, distinct ferroelectric properties and enhanced magnetoelectric effects are observed in Mo6+-doped MnWO4 compounds. The effects of substitution of Mo6+ ions on magnetic properties and magnetoelectric coupling are discussed.展开更多
Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together,...Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together, is modeled as a general spring-type layer. The mechanical displacements, and the electric and magnetic potentials of the two adjacent layers are assumed to be discontinuous at the interface. As an example, the influences of imperfect interfaces on the magnetoelectric (ME) coupling effects in an MF sandwich plate are investigated with the established 2D governing equations. Numerical results show that the imperfect interfaces have a significant impact on the ME coupling effects in MF laminated structures.展开更多
The coexistence of magnetic ordering and ferroelectricity, ing on the origin of ferroelectricity, multiferroic materials known as multiferroics, has drawn a lot of research effort. Depend can be classified into differ...The coexistence of magnetic ordering and ferroelectricity, ing on the origin of ferroelectricity, multiferroic materials known as multiferroics, has drawn a lot of research effort. Depend can be classified into different groups. In this paper, we review re cent progress in the field of multiferroics induced by different forms of charge ordering. In addition to a general description of charge order and electronic ferroelectricity, we focus on two specific systems: (1) charge order with frustration in RFe2O4 (R=Lu, Yb) system; (2) charge ordered perovskite manganites of the type (R1-xCax)MnO3 (R=La, Pr). The charge ordering can be tuned by external electric fields, which results in pronounced magnetoelectric effects and strong dielectric tunability. Other materials and possible candidates with charge order induced multiferroics are also briefly summarized.展开更多
In this perspective paper, we discuss possible ways to control magnetism using electric-field. Special focus is given to interface/surface magnetoelectric effects, which will become important when the thickness of mag...In this perspective paper, we discuss possible ways to control magnetism using electric-field. Special focus is given to interface/surface magnetoelectric effects, which will become important when the thickness of magnetic films drops to nanoscale. We show that significantly different mechanisms may lead to interface/surface magnetoelectric effects, providing great flexibility to apply such effects. As a result, we propose several protype devices utilizing these novel magnetoelectric effects, and strongly advocate experimental endeavors to realize such devices.展开更多
The effects of linear electromagnetic stirring (EMS) on the solidification structure of billet were investigated by experiments, and the electromagnetic field and the flow field during the stirring process were analyz...The effects of linear electromagnetic stirring (EMS) on the solidification structure of billet were investigated by experiments, and the electromagnetic field and the flow field during the stirring process were analyzed by numerical simulation. The results show that the billet of almost 100% equiaxed grains can be obtained by applying linear EMS at the maximum intensity of 1414 A·Hz1/2, while the maximum electromagnetic force and the maximum velocity in the molten steel are 6386 N·m-3 and 0.22 m·s-1 respectively. It is shown that in the pulsating electromagnetic force which is perpendicular to the movement of the molten steel is an important factor of increasing the equiaxed zone ration in the solidification structure, which further prevents the appearance of white band and internal defects.展开更多
Ferromagnetic shape memory alloys, which undergo the martensitic transformation, are famous multifunctional materials. They exhibit many interesting magnetic properties around the martensitic transformation temperatur...Ferromagnetic shape memory alloys, which undergo the martensitic transformation, are famous multifunctional materials. They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure. Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance. In this paper, the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni–Mn-based alloys are reviewed based on our recent research results.展开更多
This paper presents a theoretical model for predicting and tuning magnetoelectric(ME)effect of ring-shaped composites,in which stress boundary conditions are empoyed and the multi-field coupling property of giant magn...This paper presents a theoretical model for predicting and tuning magnetoelectric(ME)effect of ring-shaped composites,in which stress boundary conditions are empoyed and the multi-field coupling property of giant magnetostrictive materials are taken into account.A linear analytical solutions for the closed-and open-circuit ME voltages are derived simultaneously using mechanical differential equations,interface and boundary conditions,and electrical equations.For nonlinear ME coupling effect,the nonlinear multi-field coupling constitutive equation is reduced to an equivalent form by expanding the strains as a Taylor series in the vicinity of bias magnetic field.Sequentially,the linear model is generalized to a nonlinear one involving the field-dependent material parameters.The results show that setting a stress-free condition is beneficial for reducing resonance frequency while applying clamped conditions on the inner and outer boundaries may improve the maximum output power density.In addition,performing stress conditions on one of the boundaries may enhance ME coupling significantly,without changing the corresponding resonance frequency and optimal resistance.When external stimuli like bias magnetic field and pre-stress are applied to the ring-shaped composites,a novel dual peak phenomenon in the ME voltage curve around resonance frequencies is revealed theoretically,indicating that strong ME coupling may be achieved within a wider bias field region.Eventually,the mutual coordination of the bias field and pre-stress may enhance ME coupling as well as tuning the resonance frequency,and thus is pivotal for tunable control of ME energy harvesters.The proposed model can be applied to design high-performance energy harvesters by manipulating the mechanical conditions and external stimuli.展开更多
The frequency dependence of the magnetoelectric effect in a magnetostrictive-piezoelectric heterostructure is theoretically studied by solving combined magnetic, elastic, and electric equations with boundary condition...The frequency dependence of the magnetoelectric effect in a magnetostrictive-piezoelectric heterostructure is theoretically studied by solving combined magnetic, elastic, and electric equations with boundary conditions. Both the mechanical coupling coefficient and the losses of the magnetostrictive and piezoelectric phases are taken into account. The numerical result indicates that the magnetoelectric coefficient and the resonance frequency are determined by the mechanical coupling coefficient, losses, and geometric parameters. Moreover, at the electromechanical resonance frequency, the module of the magnetoelectric coefficient is mostly contributed by the imaginary part. The relationship between the real and the imaginary parts of the magnetoelectric coefficient fit well to the Cole–Cole circle. The magnetostrictive-piezoelectric heterostructure has a great potential application as miniature and no-secondary coil solid-state transformers.展开更多
CoFe2O4-BaTiO3 particulate composites were prepared by wet ball milling method,their magnetoelectric(ME) effect was studied as a function of their constituents and modulation frequency.The results show that the ME c...CoFe2O4-BaTiO3 particulate composites were prepared by wet ball milling method,their magnetoelectric(ME) effect was studied as a function of their constituents and modulation frequency.The results show that the ME coefficient increases as a function of modulation frequency from 400 to 1000 Hz and the ME characteristics of ME curves are also modified because the electrical conductivity of the CoFe2O4 phase is sensitive to the increase in frequency between 400 and 1 000 Hz.The third phase Ba2Fe2O5 formed during the sintering tends to reduce the ME effect.展开更多
We have measured the dielectric constant for NdMn2O5 in an external magnetic field to map out the magnetoelectric phase diagram. The phase diagram corresponds well with the previously reported data of neutron diffract...We have measured the dielectric constant for NdMn2O5 in an external magnetic field to map out the magnetoelectric phase diagram. The phase diagram corresponds well with the previously reported data of neutron diffraction and magnetic susceptibility. Our main finding is the observation of a dielectric anomaly in the low temperature phase with a strong magnetoelectric effect, which is attributed to the independent Nd^3+ ordering. Moreover, the absence of the dielectric anomaly in the paramagnetic phase is discussed, keeping in view the exchange interaction and its dependence on the rareearth R^3+ ionic radius.展开更多
A lumped-equivalent circuit model of a novel magnetoelectric tunable bandpass filter, which is realized in the form of multi-stage cascading between a plurality of magnetoelectric laminates, is established in this pap...A lumped-equivalent circuit model of a novel magnetoelectric tunable bandpass filter, which is realized in the form of multi-stage cascading between a plurality of magnetoelectric laminates, is established in this paper for convenient analysis.The multi-stage cascaded filter is degraded to the coupling microstrip filter with only one magnetoelectric laminate and then compared with the existing experiment results. The comparison reveals that the insertion loss curves predicted by the degraded circuit model are in good agreement with the experiment results and the predicted results of the electromagnetic field simulation, thus the validity of the model is verified. The model is then degraded to the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates. It is revealed that if the applied external bias magnetic or electric fields on the two magnetoelectric laminates are identical, then the passband of the filter will drift under the changed external field; that is to say, the filter has the characteristics of external magnetic field tunability and electric field tunability. If the applied external bias magnetic or electric fields on two magnetoelectric laminates are different, then the passband will disappear so that the switching characteristic is achieved. When the same magnetic fields are applied to the laminates, the passband bandwidth of the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates becomes nearly doubled in comparison with the passband filter which contains only one magnetoelectric laminate. The bandpass effect is also improved obviously. This research will provide a theoretical basis for the design, preparation, and application of a new high performance magnetoelectric tunable microwave device.展开更多
We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22,which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudina...We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22,which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudinal conical phase at 45 K.Magnetic and electric measurements revealed that the magnetic structure with spiral spin order can be modified by applying a magnetic field,resulting in magnetically controllable electric polarization.It was observed that BaSrZnMgFe12O22 exhibits an anomalous magnetoelectric memory effect:the ferroelectric state can be partially recovered from the paraelectric phase with collinear spin structure by reducing magnetic field at 20 K.We ascribe this memory effect to the pinning of multiferroic domain walls,where spin chirality and structure are preserved even in the nonpolar collinear spin state.展开更多
We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent res- onant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectr...We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent res- onant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectric Pb(Zrl_x, Tix)O3 (PZT). In order to implement this comparative research, Co-based amorphous alloy (CoSiB), Fe-based nanocrystalline alloy (FeCuNbSiB) and Fe-based amorphous alloy (FeSiB) are used according to different magnetostriction (2s) and saturation magnetization (μtoMs) characteristics. The bending and longitudinal resonant ME voltage coefficients (αME,b and αME,1) are observed comparatively for CoSiB/Ni/PZT, FeCuNbSiB/Ni/PZT, and FeSiB/Ni/PZT composites. The experimental data indicate that the FeSiB/Ni/PZT composite has the largest remanent self-biased aME,b and aME,1 due to the largest magnetic grading of λs and μ0Ms in the FeSiB/Ni layer. When the number of FeSiB foils is four, the maximum remanent aME,b and aME,I at zero bias magnetic field are 57.8 V/cm·Oe and 107.6 V/cm·Oe, respectively. It is recommended that the high-permeability alloy is supposed to have larger λs and μ0Ms for obtaining a larger remanent self-biased ME responses in ME composite with high-permeability alloy.展开更多
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The be...As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with H dc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz≤fr≤33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.展开更多
Based on Smith-Beljers theory and classical laminate theory, an explicit model is proposed for the ferromagnetic resonance (FMR) frequency shift of a stress-mediumed laminated magnetoelectric structure tuned by an e...Based on Smith-Beljers theory and classical laminate theory, an explicit model is proposed for the ferromagnetic resonance (FMR) frequency shift of a stress-mediumed laminated magnetoelectric structure tuned by an electric field. This model can effectively predict the experimental phenomenon that the FMR frequency increases under a parallel magnetic field and decreases under a perpendicular magnetic field when the electric field ranges from - 10 kV/m to 10 kV/m. Besides, this theory further shows that the FMR frequency increases monotonically as the angle between the direction of the external magnetic field and the outside normal direction of the laminated structure increases, and the frequency will increase as great as 7 GHz. In addition, when the angle reaches a certain critical value, the external electric field fails to tune the FMR frequency. When the angle is above the critical value, the increase of the electric field induces the FMR frequency to increase, and the opposite scenario happens when it is below the critical value. When the angle is 90~ (parallel magnetic field), the FMR frequency is the most sensitive to the change of the electric field.展开更多
A polyvinylidene-fluoride(PVDF)-based magnetoelectric torque(MET) device is designed with elastic layer sandwiched by PVDF layers, and low-frequency MET effect is carefully studied. It is found that elastic modulu...A polyvinylidene-fluoride(PVDF)-based magnetoelectric torque(MET) device is designed with elastic layer sandwiched by PVDF layers, and low-frequency MET effect is carefully studied. It is found that elastic modulus and thickness of the elastic layer have great influences on magnetoelectric(ME) voltage coefficient(α(ME)) and working range of frequency in PVDF-based MET device. The decrease of the modulus and thickness can help increase the α ME. However,it can also reduce the working range in the low frequency. By optimizing the parameters, the giant α(ME) of 320 V/cm·Oe(1 Oe = 79.5775 A·m^-1 at low frequency(1 Hz) can be obtained. The present results may help design PVDF-based MET low-frequency magnetic sensor with improved magnetic sensitivity in a relative large frequency range.展开更多
An effective regulation of the magnetism and interface of ferromagnetic materials is not only of great scientific significance,but also has an urgent need in modern industry.In this work,by using the first-principles ...An effective regulation of the magnetism and interface of ferromagnetic materials is not only of great scientific significance,but also has an urgent need in modern industry.In this work,by using the first-principles calculations,we demonstrate an effective approach to achieve non-volatile electrical control of ferromagnets,which proves this idea in multiferroic heterostructures of ferromagnetic La TiO_(3)and ferroelectric Bi FeO_(3).The results show that the magnetic properties and two-dimensional electron gas concentrations of La TiO_(3)films can be controlled by changing the polarization directions of Bi FeO_(3).The destroyed symmetry being introduced by ferroelectric polarization of the system leads to the transfer and reconstruction of the Ti-3 d electrons,which is the fundamental reason for the changing of magnetic properties.This multiferroic heterostructures will pave the way for non-volatile electrical control of ferromagnets and have potential applications.展开更多
In this study, we observe a strong inverse magnetoelectric coupling in Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure, which produces large electric field(E-field) tunability of microwave magnetic properties....In this study, we observe a strong inverse magnetoelectric coupling in Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure, which produces large electric field(E-field) tunability of microwave magnetic properties. With the increase of the E-field from 0 to 8 kV/cm, the magnetic anisotropy field Heffis dramatically enhanced from 169 to 600 Oe, which further leads to a significant enhancement of ferromagnetic resonance frequency from 4.57 to 8.73 GHz under zero bias magnetic field, and a simultaneous decrease of the damping constant α from 0.021 to 0.0186. These features demonstrate that this multiferroic composite is a promising candidate for fabricating E-field tunable microwave components.展开更多
Multiferroic composites with a large magnetoelectric response are gaining attractive interests for the design of magnetoelectric(ME)functional devices.In this work,the particulate ME composites(Ba_(0.85)Ca_(0.15))(Zr_...Multiferroic composites with a large magnetoelectric response are gaining attractive interests for the design of magnetoelectric(ME)functional devices.In this work,the particulate ME composites(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)-xBaFe_(12)O_(19)(x=0,0.1,0.2,0.3,0.4 and 1)were prepared,and their structural,dielectric,magnetic,ferroelectric,piezoelectric properties and magnetoelectric coupling were systematically investigated.The composites consisted of only two chemically separated phases with well-bonded interface.Dielectric and impedance analyses indicated the co-contribution of grain and grain boundary to polarization.Well-saturated ferroelectric and magnetic hysteresis loops demonstrated multiferroic nature.ME response was investigated elaborately by employing magnetically induced polarization,together with measuring ME voltage coefficient and magnetodielectric value.Specifically,a large ME coefficient of 26.78 mV/cm·Oe was achieved for x=0.3,which is higher than that in single-phase BaFe_(12)O_(19)and its coupled composites.展开更多
Multiferroic bi-layer Fe/BaTiO3 (BTO) thin films were successfully deposited on Pt(200)/MgO(100) substrates using ion beam sputter deposition (1BSD), and the mutiferroic properties were studied at room tempera...Multiferroic bi-layer Fe/BaTiO3 (BTO) thin films were successfully deposited on Pt(200)/MgO(100) substrates using ion beam sputter deposition (1BSD), and the mutiferroic properties were studied at room temperature. X-ray diffraction (XRD) analyses showed that BTO films were c-axis oriented and epitaxially grown on platinum coated MgO substrates, and (110) epitaxial Fe films were subsequently grown on (001) BTO films. Fe/BTO bi-layer films showed good ferroelectric and ferromagnetic properties at room temperature and the multiferroic coupling was observed, which should be attributed to the hybridization of Fe and Ti occurring at the ferromagnetic-ferroelectric interface.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2012CB932304 and 2009CB929501)the National Natural ScienceFoundation of China(Grant Nos.11174130 and U1232210)
文摘In this letter, we investigate the magnetic and ferroelectric properties of polycrystalline MnW1-xMoxO4 (x = 0, 0.05, 0.10, 0.20) compounds. The substitution of nonmagnetic Mo6+ ions for W6+ ions modifies the magnetic transition tem- peratures of MnW1-xMoxO4 by changing the Mn-O-Mn bond. As a result, distinct ferroelectric properties and enhanced magnetoelectric effects are observed in Mo6+-doped MnWO4 compounds. The effects of substitution of Mo6+ ions on magnetic properties and magnetoelectric coupling are discussed.
基金supported by the National Natural Science Foundation of China(11672265,11202182,11272281,11621062,and 11321202)the Fundamental Research Funds for the Central Universities(2016QNA4026 and 2016XZZX001-05)the open foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together, is modeled as a general spring-type layer. The mechanical displacements, and the electric and magnetic potentials of the two adjacent layers are assumed to be discontinuous at the interface. As an example, the influences of imperfect interfaces on the magnetoelectric (ME) coupling effects in an MF sandwich plate are investigated with the established 2D governing equations. Numerical results show that the imperfect interfaces have a significant impact on the ME coupling effects in MF laminated structures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074293,51021061 and 50831006)
文摘The coexistence of magnetic ordering and ferroelectricity, ing on the origin of ferroelectricity, multiferroic materials known as multiferroics, has drawn a lot of research effort. Depend can be classified into different groups. In this paper, we review re cent progress in the field of multiferroics induced by different forms of charge ordering. In addition to a general description of charge order and electronic ferroelectricity, we focus on two specific systems: (1) charge order with frustration in RFe2O4 (R=Lu, Yb) system; (2) charge ordered perovskite manganites of the type (R1-xCax)MnO3 (R=La, Pr). The charge ordering can be tuned by external electric fields, which results in pronounced magnetoelectric effects and strong dielectric tunability. Other materials and possible candidates with charge order induced multiferroics are also briefly summarized.
文摘In this perspective paper, we discuss possible ways to control magnetism using electric-field. Special focus is given to interface/surface magnetoelectric effects, which will become important when the thickness of magnetic films drops to nanoscale. We show that significantly different mechanisms may lead to interface/surface magnetoelectric effects, providing great flexibility to apply such effects. As a result, we propose several protype devices utilizing these novel magnetoelectric effects, and strongly advocate experimental endeavors to realize such devices.
文摘The effects of linear electromagnetic stirring (EMS) on the solidification structure of billet were investigated by experiments, and the electromagnetic field and the flow field during the stirring process were analyzed by numerical simulation. The results show that the billet of almost 100% equiaxed grains can be obtained by applying linear EMS at the maximum intensity of 1414 A·Hz1/2, while the maximum electromagnetic force and the maximum velocity in the molten steel are 6386 N·m-3 and 0.22 m·s-1 respectively. It is shown that in the pulsating electromagnetic force which is perpendicular to the movement of the molten steel is an important factor of increasing the equiaxed zone ration in the solidification structure, which further prevents the appearance of white band and internal defects.
基金the National Basic Research Program of China(Grant No.2012CB932304)the National Natural Science Foundation of China(Grant No.U1232210)
文摘Ferromagnetic shape memory alloys, which undergo the martensitic transformation, are famous multifunctional materials. They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure. Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance. In this paper, the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni–Mn-based alloys are reviewed based on our recent research results.
基金supported by the National Natural Science Foundation of China(Grant No.11702202)the Fundamental Research Funds for the Central Universities,China(Grant No.JB210410)the the National Natural Science Foundation of China(Grant No.51805401)。
文摘This paper presents a theoretical model for predicting and tuning magnetoelectric(ME)effect of ring-shaped composites,in which stress boundary conditions are empoyed and the multi-field coupling property of giant magnetostrictive materials are taken into account.A linear analytical solutions for the closed-and open-circuit ME voltages are derived simultaneously using mechanical differential equations,interface and boundary conditions,and electrical equations.For nonlinear ME coupling effect,the nonlinear multi-field coupling constitutive equation is reduced to an equivalent form by expanding the strains as a Taylor series in the vicinity of bias magnetic field.Sequentially,the linear model is generalized to a nonlinear one involving the field-dependent material parameters.The results show that setting a stress-free condition is beneficial for reducing resonance frequency while applying clamped conditions on the inner and outer boundaries may improve the maximum output power density.In addition,performing stress conditions on one of the boundaries may enhance ME coupling significantly,without changing the corresponding resonance frequency and optimal resistance.When external stimuli like bias magnetic field and pre-stress are applied to the ring-shaped composites,a novel dual peak phenomenon in the ME voltage curve around resonance frequencies is revealed theoretically,indicating that strong ME coupling may be achieved within a wider bias field region.Eventually,the mutual coordination of the bias field and pre-stress may enhance ME coupling as well as tuning the resonance frequency,and thus is pivotal for tunable control of ME energy harvesters.The proposed model can be applied to design high-performance energy harvesters by manipulating the mechanical conditions and external stimuli.
文摘The frequency dependence of the magnetoelectric effect in a magnetostrictive-piezoelectric heterostructure is theoretically studied by solving combined magnetic, elastic, and electric equations with boundary conditions. Both the mechanical coupling coefficient and the losses of the magnetostrictive and piezoelectric phases are taken into account. The numerical result indicates that the magnetoelectric coefficient and the resonance frequency are determined by the mechanical coupling coefficient, losses, and geometric parameters. Moreover, at the electromechanical resonance frequency, the module of the magnetoelectric coefficient is mostly contributed by the imaginary part. The relationship between the real and the imaginary parts of the magnetoelectric coefficient fit well to the Cole–Cole circle. The magnetostrictive-piezoelectric heterostructure has a great potential application as miniature and no-secondary coil solid-state transformers.
基金The TGIST scholarship (TG-33-12-51-048D) is granted to the first author by the National Metal and Materials Technology Center (MTEC) of NSTDA
文摘CoFe2O4-BaTiO3 particulate composites were prepared by wet ball milling method,their magnetoelectric(ME) effect was studied as a function of their constituents and modulation frequency.The results show that the ME coefficient increases as a function of modulation frequency from 400 to 1000 Hz and the ME characteristics of ME curves are also modified because the electrical conductivity of the CoFe2O4 phase is sensitive to the increase in frequency between 400 and 1 000 Hz.The third phase Ba2Fe2O5 formed during the sintering tends to reduce the ME effect.
基金supported by Higher Education Commission(HEC)of Pakistan through its IRSIP scholarship program(IRSIP 27 PS 28)
文摘We have measured the dielectric constant for NdMn2O5 in an external magnetic field to map out the magnetoelectric phase diagram. The phase diagram corresponds well with the previously reported data of neutron diffraction and magnetic susceptibility. Our main finding is the observation of a dielectric anomaly in the low temperature phase with a strong magnetoelectric effect, which is attributed to the independent Nd^3+ ordering. Moreover, the absence of the dielectric anomaly in the paramagnetic phase is discussed, keeping in view the exchange interaction and its dependence on the rareearth R^3+ ionic radius.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172285 and 11472259)the Natural Science Foundation of Zhejiang Province,China(Grant No.LR13A020002)
文摘A lumped-equivalent circuit model of a novel magnetoelectric tunable bandpass filter, which is realized in the form of multi-stage cascading between a plurality of magnetoelectric laminates, is established in this paper for convenient analysis.The multi-stage cascaded filter is degraded to the coupling microstrip filter with only one magnetoelectric laminate and then compared with the existing experiment results. The comparison reveals that the insertion loss curves predicted by the degraded circuit model are in good agreement with the experiment results and the predicted results of the electromagnetic field simulation, thus the validity of the model is verified. The model is then degraded to the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates. It is revealed that if the applied external bias magnetic or electric fields on the two magnetoelectric laminates are identical, then the passband of the filter will drift under the changed external field; that is to say, the filter has the characteristics of external magnetic field tunability and electric field tunability. If the applied external bias magnetic or electric fields on two magnetoelectric laminates are different, then the passband will disappear so that the switching characteristic is achieved. When the same magnetic fields are applied to the laminates, the passband bandwidth of the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates becomes nearly doubled in comparison with the passband filter which contains only one magnetoelectric laminate. The bandpass effect is also improved obviously. This research will provide a theoretical basis for the design, preparation, and application of a new high performance magnetoelectric tunable microwave device.
基金supported by the National Natural Science Foundation of China(Grant Nos.11534015 and 51371193)
文摘We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22,which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudinal conical phase at 45 K.Magnetic and electric measurements revealed that the magnetic structure with spiral spin order can be modified by applying a magnetic field,resulting in magnetically controllable electric polarization.It was observed that BaSrZnMgFe12O22 exhibits an anomalous magnetoelectric memory effect:the ferroelectric state can be partially recovered from the paraelectric phase with collinear spin structure by reducing magnetic field at 20 K.We ascribe this memory effect to the pinning of multiferroic domain walls,where spin chirality and structure are preserved even in the nonpolar collinear spin state.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA040602)the National Natural Science Foundation of China(Grant No.61374217)
文摘We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent res- onant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectric Pb(Zrl_x, Tix)O3 (PZT). In order to implement this comparative research, Co-based amorphous alloy (CoSiB), Fe-based nanocrystalline alloy (FeCuNbSiB) and Fe-based amorphous alloy (FeSiB) are used according to different magnetostriction (2s) and saturation magnetization (μtoMs) characteristics. The bending and longitudinal resonant ME voltage coefficients (αME,b and αME,1) are observed comparatively for CoSiB/Ni/PZT, FeCuNbSiB/Ni/PZT, and FeSiB/Ni/PZT composites. The experimental data indicate that the FeSiB/Ni/PZT composite has the largest remanent self-biased aME,b and aME,1 due to the largest magnetic grading of λs and μ0Ms in the FeSiB/Ni layer. When the number of FeSiB foils is four, the maximum remanent aME,b and aME,I at zero bias magnetic field are 57.8 V/cm·Oe and 107.6 V/cm·Oe, respectively. It is recommended that the high-permeability alloy is supposed to have larger λs and μ0Ms for obtaining a larger remanent self-biased ME responses in ME composite with high-permeability alloy.
基金the National Natural Science Foundation of China(Grant Nos.50830202 and 61071042)the National High Technology Research and Development Program of China(Grant No.2012AA040602)
文摘As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with H dc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz≤fr≤33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10802082 and 11172285)the Natural Science Foundation of Zhejiang Province of China(Grant No.LR13A020002)the China Postdoctoral Science Foundation(Grant Nos.20100480089 and 201104727)
文摘Based on Smith-Beljers theory and classical laminate theory, an explicit model is proposed for the ferromagnetic resonance (FMR) frequency shift of a stress-mediumed laminated magnetoelectric structure tuned by an electric field. This model can effectively predict the experimental phenomenon that the FMR frequency increases under a parallel magnetic field and decreases under a perpendicular magnetic field when the electric field ranges from - 10 kV/m to 10 kV/m. Besides, this theory further shows that the FMR frequency increases monotonically as the angle between the direction of the external magnetic field and the outside normal direction of the laminated structure increases, and the frequency will increase as great as 7 GHz. In addition, when the angle reaches a certain critical value, the external electric field fails to tune the FMR frequency. When the angle is above the critical value, the increase of the electric field induces the FMR frequency to increase, and the opposite scenario happens when it is below the critical value. When the angle is 90~ (parallel magnetic field), the FMR frequency is the most sensitive to the change of the electric field.
基金supported by the National Natural Science Foundation of China(Grant Nos.51525103,51522105,and 11304326)the National Key Technology Research and Development Program of China(Grant No.2016YFA0201102)+1 种基金Ningbo Municipal Science and Technology Innovation Team,China(Grant No.2015B11001)the Ningbo Municipal Major Science and Technology Projects,China(Grant No.2015B11027)
文摘A polyvinylidene-fluoride(PVDF)-based magnetoelectric torque(MET) device is designed with elastic layer sandwiched by PVDF layers, and low-frequency MET effect is carefully studied. It is found that elastic modulus and thickness of the elastic layer have great influences on magnetoelectric(ME) voltage coefficient(α(ME)) and working range of frequency in PVDF-based MET device. The decrease of the modulus and thickness can help increase the α ME. However,it can also reduce the working range in the low frequency. By optimizing the parameters, the giant α(ME) of 320 V/cm·Oe(1 Oe = 79.5775 A·m^-1 at low frequency(1 Hz) can be obtained. The present results may help design PVDF-based MET low-frequency magnetic sensor with improved magnetic sensitivity in a relative large frequency range.
基金the National Natural Science Foundation of China(Grant No.12047517)the International Cooperation Project of Science and Technology of Henan Province,China(Grant No.182102410096)+1 种基金the Natural Science Foundation of Henan Province,China(Grant No.202300410069)the China Postdoctoral Science Foundation(Grant Nos.2020M682274 and 2020TQ0089)。
文摘An effective regulation of the magnetism and interface of ferromagnetic materials is not only of great scientific significance,but also has an urgent need in modern industry.In this work,by using the first-principles calculations,we demonstrate an effective approach to achieve non-volatile electrical control of ferromagnets,which proves this idea in multiferroic heterostructures of ferromagnetic La TiO_(3)and ferroelectric Bi FeO_(3).The results show that the magnetic properties and two-dimensional electron gas concentrations of La TiO_(3)films can be controlled by changing the polarization directions of Bi FeO_(3).The destroyed symmetry being introduced by ferroelectric polarization of the system leads to the transfer and reconstruction of the Ti-3 d electrons,which is the fundamental reason for the changing of magnetic properties.This multiferroic heterostructures will pave the way for non-volatile electrical control of ferromagnets and have potential applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674187)
文摘In this study, we observe a strong inverse magnetoelectric coupling in Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure, which produces large electric field(E-field) tunability of microwave magnetic properties. With the increase of the E-field from 0 to 8 kV/cm, the magnetic anisotropy field Heffis dramatically enhanced from 169 to 600 Oe, which further leads to a significant enhancement of ferromagnetic resonance frequency from 4.57 to 8.73 GHz under zero bias magnetic field, and a simultaneous decrease of the damping constant α from 0.021 to 0.0186. These features demonstrate that this multiferroic composite is a promising candidate for fabricating E-field tunable microwave components.
基金financially supported by the National Key Research and Development Program of China(2017YFA0204600)the National Natural Science Foundation of China(51902104).
文摘Multiferroic composites with a large magnetoelectric response are gaining attractive interests for the design of magnetoelectric(ME)functional devices.In this work,the particulate ME composites(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)-xBaFe_(12)O_(19)(x=0,0.1,0.2,0.3,0.4 and 1)were prepared,and their structural,dielectric,magnetic,ferroelectric,piezoelectric properties and magnetoelectric coupling were systematically investigated.The composites consisted of only two chemically separated phases with well-bonded interface.Dielectric and impedance analyses indicated the co-contribution of grain and grain boundary to polarization.Well-saturated ferroelectric and magnetic hysteresis loops demonstrated multiferroic nature.ME response was investigated elaborately by employing magnetically induced polarization,together with measuring ME voltage coefficient and magnetodielectric value.Specifically,a large ME coefficient of 26.78 mV/cm·Oe was achieved for x=0.3,which is higher than that in single-phase BaFe_(12)O_(19)and its coupled composites.
基金Project supported by the Yeungnam University Research Grant in 2010Project (507111403888) supported by the National Science Foundation of China for International Communication and CooperationProject (50672034) supported by the National Natural Science Foundation of China
文摘Multiferroic bi-layer Fe/BaTiO3 (BTO) thin films were successfully deposited on Pt(200)/MgO(100) substrates using ion beam sputter deposition (1BSD), and the mutiferroic properties were studied at room temperature. X-ray diffraction (XRD) analyses showed that BTO films were c-axis oriented and epitaxially grown on platinum coated MgO substrates, and (110) epitaxial Fe films were subsequently grown on (001) BTO films. Fe/BTO bi-layer films showed good ferroelectric and ferromagnetic properties at room temperature and the multiferroic coupling was observed, which should be attributed to the hybridization of Fe and Ti occurring at the ferromagnetic-ferroelectric interface.