期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
Improved Bat Algorithm with Deep Learning-Based Biomedical ECG Signal Classification Model
1
作者 Marwa Obayya Nadhem NEMRI +5 位作者 Lubna A.Alharbi Mohamed K.Nour Mrim M.Alnfiai Mohammed Abdullah Al-Hagery Nermin M.Salem Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2023年第2期3151-3166,共16页
With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-base... With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%. 展开更多
关键词 Data science ECG signals improved bat algorithm deep learning biomedical data data classification machine learning
下载PDF
Meta-Heuristic Optimized Hybrid Wavelet Features for Arrhythmia Classification
2
作者 S.R.Deepa M.Subramoniam +2 位作者 R.Swarnalatha S.Poornapushpakala S.Barani 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期745-761,共17页
The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract ... The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier. 展开更多
关键词 Arrhythmia classification abnormal heartbeats WAVELETS meta-heuristics algorithm neural network signal classification
下载PDF
Competitive Multi-Verse Optimization with Deep Learning Based Sleep Stage Classification
3
作者 Anwer Mustafa Hilal Amal Al-Rasheed +5 位作者 Jaber SAlzahrani Majdy M.Eltahir Mesfer Al Duhayyim Nermin M.Salem Ishfaq Yaseen Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1249-1263,共15页
Sleep plays a vital role in optimum working of the brain and the body.Numerous people suffer from sleep-oriented illnesses like apnea,insomnia,etc.Sleep stage classification is a primary process in the quantitative ex... Sleep plays a vital role in optimum working of the brain and the body.Numerous people suffer from sleep-oriented illnesses like apnea,insomnia,etc.Sleep stage classification is a primary process in the quantitative examination of polysomnographic recording.Sleep stage scoring is mainly based on experts’knowledge which is laborious and time consuming.Hence,it can be essential to design automated sleep stage classification model using machine learning(ML)and deep learning(DL)approaches.In this view,this study focuses on the design of Competitive Multi-verse Optimization with Deep Learning Based Sleep Stage Classification(CMVODL-SSC)model using Electroencephalogram(EEG)signals.The proposed CMVODL-SSC model intends to effectively categorize different sleep stages on EEG signals.Primarily,data pre-processing is performed to convert the actual data into useful format.Besides,a cascaded long short term memory(CLSTM)model is employed to perform classification process.At last,the CMVO algorithm is utilized for optimally tuning the hyperparameters involved in the CLSTM model.In order to report the enhancements of the CMVODL-SSC model,a wide range of simulations was carried out and the results ensured the better performance of the CMVODL-SSC model with average accuracy of 96.90%. 展开更多
关键词 signal processing EEG signals sleep stage classification clstm model deep learning cmvo algorithm
下载PDF
A Classification Algorithm for Ground Moving Targets Based on Magnetic Sensors
4
作者 崔逊学 刘綦 刘坤 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第1期52-58,共7页
A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,t... A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,the moving targets are detected by a magnetic sensor and classified with a simple computation method. The detection sensor is used for collecting a disturbance signal of earth magnetic field from an undetermined target. An optimum category match pattern of target signature is tested by training some statistical samples and designing a classification machine. Three ordinary targets are researched in the paper. The experimental results show that the algorithm has a low computation cost and a better sorting accuracy. This classification method can be applied to ground reconnaissance and target intrusion detection. 展开更多
关键词 information processing magnetic sensor abnormal magnetic signal target detection target classification classification algorithm
下载PDF
Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features 被引量:1
5
作者 N.Kins Burk Sunil R.Ganesan B.Sankaragomathi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期351-375,共25页
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ... Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO. 展开更多
关键词 OBSTRUCTIVE sleep APNEA photoplethysmogram signal time DOMAIN FEATURES frequency DOMAIN FEATURES classification and regression tree classifIER particle swarm optimization algorithm.
下载PDF
异构多平台信号处理任务调度研究 被引量:1
6
作者 李宇东 马金全 +1 位作者 谢宗甫 沈小龙 《电子科技》 2024年第1期24-32,共9页
简单的并行计算或单一异构平台已经无法满足计算量大、复杂度高的信号处理和任务调度需求,异构多平台系统已经成为信号处理和任务调度的发展趋势。针对提高平台的吞吐量、处理器的利用率以及任务的感知等问题,文中对异构多平台信号处理... 简单的并行计算或单一异构平台已经无法满足计算量大、复杂度高的信号处理和任务调度需求,异构多平台系统已经成为信号处理和任务调度的发展趋势。针对提高平台的吞吐量、处理器的利用率以及任务的感知等问题,文中对异构多平台信号处理模型进行了研究,并利用有向无环图对调度任务和软硬件资源建模。基于已提出的调度算法,对任务调度进行了归纳总结、对比分析,发现基于任务感知的混合调度算法能够较好地满足平台调度需求。利用基于任务感知的混合调度算法解决信号处理中的任务调度将是未来研究发展的趋势。 展开更多
关键词 异构多平台信号处理 软件体系 硬件架构 任务调度 任务感知 算法分类 有向无环图 混合算法
下载PDF
基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断
7
作者 李俊逸 尧远 刘明浩 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期626-633,共8页
针对风力机齿轮箱故障诊断的特征提取过程,提出基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断方法。首先,分析3种主要特征提取算法各自适应性高的信号类型;然后,根据不同类型信号所具有的信号特性,利用信号分析对传入的振动... 针对风力机齿轮箱故障诊断的特征提取过程,提出基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断方法。首先,分析3种主要特征提取算法各自适应性高的信号类型;然后,根据不同类型信号所具有的信号特性,利用信号分析对传入的振动信号进行特性提取并分类,将不同类别信号与适应性高的特征提取算法进行匹配,实现振动信号的最优特征提取;最后,将匹配算法与支持向量机模型结合实现故障诊断。对实际采集的3种齿轮故障信号进行测试与验证,结果表明该方法可有效进行最优特征提取与算法匹配,相比未经过匹配算法具有更高的故障诊断准确率。 展开更多
关键词 风力机 齿轮箱 故障诊断 特征提取 信号分类 算法匹配 支持向量机
下载PDF
基于多信号分类-改进早晚功率锁相环的5G机会信号定位算法
8
作者 田京鹭 孙骞 +2 位作者 简鑫 李一兵 陈浩 《应用科技》 CAS 2024年第4期136-144,共9页
随着5G技术的不断发展,5G蜂窝网络已被广泛应用于城市地区。然而,基于5G的机会信号定位技术中存在着测距精度不高的问题。针对此问题,提出一种改进型5G机会信号定位算法,该算法将多信号分类(multiple signal classification,MUSIC)算法... 随着5G技术的不断发展,5G蜂窝网络已被广泛应用于城市地区。然而,基于5G的机会信号定位技术中存在着测距精度不高的问题。针对此问题,提出一种改进型5G机会信号定位算法,该算法将多信号分类(multiple signal classification,MUSIC)算法与改进的早-晚功率锁相环(phase-locked loop,PLL)结合,不仅简化了锁相环结构,更保证了测距精度;同时搭建了基于5G机会信号定位的原理样机,并对改进算法方法的有效性和可行性进行了验证,试验结果表明伪距均方误差为3.03 m。本文所提出的算法不仅结构简单、系统稳定,而且在测距精度上也有一定的优势。 展开更多
关键词 行人导航定位 室外定位 5G机会信号 帧结构 到达时间估计 多信号分类算法 早-晚功率锁相环 延迟锁相环
下载PDF
小孔径多波束声呐测深算法改进
9
作者 孙璟 符晓磊 夏伟杰 《应用声学》 CSCD 北大核心 2024年第4期727-734,共8页
多波束测深声呐采用多重信号分类算法能够在较小阵列尺寸的情况下保证较高的角度分辨率。然而,由于水底回波的边缘波束信噪比较低,多重信号分类算法伪谱中较强的伪峰干扰会导致后续测深算法的深度估计结果出现错误。针对该问题,提出一... 多波束测深声呐采用多重信号分类算法能够在较小阵列尺寸的情况下保证较高的角度分辨率。然而,由于水底回波的边缘波束信噪比较低,多重信号分类算法伪谱中较强的伪峰干扰会导致后续测深算法的深度估计结果出现错误。针对该问题,提出一种基于最大信噪比的修正峰值搜索算法。该算法假定相邻波束的水底地形具有缓变性,选取回波信噪比最大的时刻,利用多重信号分类算法进行波达方向估计以获取信号角度、时间参考值。然后,分别向左右两侧利用时间期望值对回波信号进行加权与峰值搜索,实现更精确的测深。最后,通过实测数据验证了该文提出算法的有效性,该算法在特定条件下能够将边缘波束的最大测深误差减小25.85%,平均测深误差减小8.02%。 展开更多
关键词 多波束测深声呐 小孔径阵列 多重信号分类算法 修正峰值搜索
下载PDF
基于宏微导向的ACO-MUSIC两级相控声源定位算法
10
作者 刘缘 邓丽军 +2 位作者 程树添 曾吕明 纪轩荣 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期67-73,197,共8页
针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在... 针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。 展开更多
关键词 宏微导向 蚁群算法 多重信号分类算法 声源定位算法
下载PDF
VMD与MUSIC相结合的超宽带雷达呼吸与心跳检测系统
11
作者 李春帅 张朝霞 +1 位作者 史碧俊 王倩 《现代雷达》 CSCD 北大核心 2024年第10期86-94,共9页
超宽带雷达是一种重要的生命探测遥感工具,文中利用超宽带雷达穿透能力强、分辨率高等优点,可以得到人体的生命体征信息,处理雷达回波信号可以得到呼吸心跳信息,实现对生命信号的非接触式监测。文中针对回波信号易受环境噪声影响、心跳... 超宽带雷达是一种重要的生命探测遥感工具,文中利用超宽带雷达穿透能力强、分辨率高等优点,可以得到人体的生命体征信息,处理雷达回波信号可以得到呼吸心跳信息,实现对生命信号的非接触式监测。文中针对回波信号易受环境噪声影响、心跳信号微弱且易受呼吸谐波影响的问题,构造了生命体征模型模拟人体呼吸与心跳频率,提出了一种基于变分模态分解(VMD)与多重分类算法(MUSIC)相结合的方法。使用PulsON440超宽带雷达在1 m距离处进行了实验,与传统的快速傅里叶变换、奇异值分解相比,该方法提取的呼吸和心跳信号更加准确。在不同距离和遮蔽条件下验证了该方法的适用性。结果表明提出的基于MUSIC和VMD相结合的方法能够有效地从大呼吸信号中分离出小心跳信号,准确地检测出呼吸和心跳频率。 展开更多
关键词 超宽带雷达 目标生命探测 傅里叶变换 多重分类算法 变分模态分解算法
下载PDF
基于共形极化敏感阵列的MUSIC算法角度分辨力研究
12
作者 皮楚 吴迪 何昉明 《太赫兹科学与电子信息学报》 2024年第10期1133-1141,共9页
针对具有超分辨能力的多重信号分类(MUSIC)算法在基于共形极化敏感阵列的被动雷达导引头测向应用中的角分辨力问题,提出了谱函数角分辨力的定义与分辨角门限。利用MUSIC算法零谱的定义近似推导了在渐进有偏条件下的期望值,并针对矢量阵... 针对具有超分辨能力的多重信号分类(MUSIC)算法在基于共形极化敏感阵列的被动雷达导引头测向应用中的角分辨力问题,提出了谱函数角分辨力的定义与分辨角门限。利用MUSIC算法零谱的定义近似推导了在渐进有偏条件下的期望值,并针对矢量阵列与标量阵列模型分别得出了相应的角分辨力表达式。以均匀圆形阵列为例,根据计算机仿真模型定量分析了各参量对角分辨力的影响,对比了标量阵列与矢量阵列的分辨角门限统计值。仿真结果表明,在同样的阵列及信号源参数设定条件下,标量均匀圆阵的分辨角值普遍高于矢量均匀圆阵。 展开更多
关键词 被动测向 极化敏感阵列 角分辨力 多重信号分类算法
下载PDF
DQ变换和MUSIC算法在ITER磁体电源信号间谐波检测中的应用
13
作者 张文晋 马渊明 +1 位作者 陈兴 王亚洲 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期912-916,共5页
随着国际热核聚变实验堆(International Thermonuclear Experimental Reactor,ITER)计划的逐步开展,保证ITER磁体电源系统的稳定运行显得尤为重要。文章采用将DQ变换和多信号分类(multiple signal classification,MUSIC)算法相结合的方... 随着国际热核聚变实验堆(International Thermonuclear Experimental Reactor,ITER)计划的逐步开展,保证ITER磁体电源系统的稳定运行显得尤为重要。文章采用将DQ变换和多信号分类(multiple signal classification,MUSIC)算法相结合的方法进行间谐波频率检测,信号的幅度和相位由最小二乘法来估计。DQ变换可以消除大幅度ITER基波分量,MUSIC算法可以通过矩阵特征分解检测出短数据条件下的谐波和间谐波,适用短时平稳的间谐波检测,两者相结合可以有效检测出大幅度基波附近存在小幅度间谐波。仿真实验表明,计算经DQ变换后检测出的ITER信号谐波频率时,取中间信号计算真实频谱较为正确,两侧信号则有较大的误差。 展开更多
关键词 国际热核聚变实验堆(ITER)磁体电源系统 间谐波 DQ变换 最小二乘法 多信号分类(MUSIC)算法
下载PDF
一种无线传感器网络静态节点分类算法设计
14
作者 王柔 李倩 +1 位作者 高艺博 张永芳 《传感器世界》 2024年第8期41-46,共6页
传感器网络中产生大量的原始数据需要通过有限的带宽传输到中央节点进行处理,且这些数据中高频信号可能容易受到噪声和干扰的影响,导致数据质量下降,影响分类效率和质量。对此,提出一种无线传感器网络静态节点分类算法。对无线传感器网... 传感器网络中产生大量的原始数据需要通过有限的带宽传输到中央节点进行处理,且这些数据中高频信号可能容易受到噪声和干扰的影响,导致数据质量下降,影响分类效率和质量。对此,提出一种无线传感器网络静态节点分类算法。对无线传感器网络静态节点数据滤波,描述静态节点属性特征;利用场可编程门阵列(Field Programmable Gate Array,FPGA)实现传感器节点的数字下变频,降低信号频率,进一步减少噪声和干扰对信号的影响,并减少数据的传输量;引入支持向量机算法,完成静态节点的分类。实验证明,该算法可以在短时间内完成大量的数据处理任务,分类效果好,具有应用价值。 展开更多
关键词 节点分类 无线传感器 噪声干扰 信号频率 静态节点 分类算法
下载PDF
脑电图信号多维度特性分析在癫痫病发作预测中的应用
15
作者 努尔比亚·阿不拉江 阿地力江·阿布力米提 +3 位作者 祖木来提·司马义 阿不都米吉提·阿吉 阿依夏·米吉提 古丽乃则尔·麦麦提 《生命科学仪器》 2024年第1期10-13,共4页
癫痫患者的非线性脑电信号存在规律难以分类识别等困境。本研究基于卷积神经网络结合多种智能寻优算法,构建联合式脑电信号分类模型,并通过实验验证其收敛性和分类性能。模型不同的频率对大脑的刺激下均能准确地测试脑电信号对应的变化... 癫痫患者的非线性脑电信号存在规律难以分类识别等困境。本研究基于卷积神经网络结合多种智能寻优算法,构建联合式脑电信号分类模型,并通过实验验证其收敛性和分类性能。模型不同的频率对大脑的刺激下均能准确地测试脑电信号对应的变化规律,并选取数据集对其收敛效率进行测试,联合算法从第10次迭代的收敛速度明显优于其余算法,到200代时仍具备较大优势。联合算法比传统的极限学习机分类效率高出约10%。综合来看,该模型在实际的诊断场景下对癫痫患者的脑电信号起到采集剖析分类等作用,对癫痫发作的诊断和预测具备一定的实用性和参考价值。 展开更多
关键词 癫痫 脑电信号 卷积神经网络 智能寻优算法 分类模型
下载PDF
A Time-Frequency Associated MUSIC Algorithm Research on Human Target Detection by Through-Wall Radar 被引量:1
16
作者 Xianyu Dong Wu Ren +2 位作者 Zhenghui Xue Xuetian Wang Weiming Li 《Journal of Beijing Institute of Technology》 EI CAS 2022年第1期123-130,共8页
In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can b... In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm. 展开更多
关键词 through-wall radar multiple signal classification(MUSIC)algorithm inverse fast Four-ier transform(IFFT)algorithm target detection
下载PDF
A Tunable Resolution MUSIC Algorithm for Interharmonics Analysis
17
作者 Ming Zhang Xiang Zhang +1 位作者 Heng Yao Shunfan He 《Journal of Power and Energy Engineering》 2017年第9期1-13,共13页
The harmonic and interharmonic analysis recommendations are contained in the latest IEC standards on power quality. Measurement and analysis experiences have shown that great difficulties arise in the interharmonic de... The harmonic and interharmonic analysis recommendations are contained in the latest IEC standards on power quality. Measurement and analysis experiences have shown that great difficulties arise in the interharmonic detection and measurement with acceptable levels of accuracy. In order to improve the resolution of spectrum analysis, the traditional method (e.g. discrete Fourier transform) is to take more sampling cycles, e.g. 10 sampling cycles corresponding to the spectrum interval of 5 Hz while the fundamental frequency is 50 Hz. However, this method is not suitable to the interharmonic measurement, because the frequencies of interharmonic components are non-integer multiples of the fundamental frequency, which makes the measurement additionally difficult. In this paper, the tunable resolution multiple signal classification (TRMUSIC) algorithm is presented, which the spectrum can be tuned to exhibit high resolution in targeted regions. Some simulation examples show that the resolution for two adjacent frequency components is usually sufficient to measure interharmonics in power systems with acceptable computation time. The proposed method is also suited to analyze interharmonics when there exists an undesirable asynchronous deviation and additive white noise. 展开更多
关键词 INTERHARMONICS ANALYSIS TUNABLE RESOLUTION Multiple signal classification (TRMUSIC) algorithm SUBSPACE DECOMPOSITION Spectral ANALYSIS
下载PDF
极化敏感阵列到达方向估计方法的FPGA实现
18
作者 刘鲁涛 曹莹 郑昱 《电子与信息学报》 EI CSCD 北大核心 2023年第9期3340-3349,共10页
针对将传统的复数多重信号分类(MUSIC)算法直接嵌入现场可编程门阵列(FPGA)将消耗大量硬件资源和计算时间的问题,该文提出基于极化敏感阵列的实数化的MUSIC算法的FPGA实现方案。利用圆形分布极化敏感阵列的中心对称特性,提出一种实数化... 针对将传统的复数多重信号分类(MUSIC)算法直接嵌入现场可编程门阵列(FPGA)将消耗大量硬件资源和计算时间的问题,该文提出基于极化敏感阵列的实数化的MUSIC算法的FPGA实现方案。利用圆形分布极化敏感阵列的中心对称特性,提出一种实数化预处理方法,该方法直接对接收信号做线性变换,从而简化极化MUSIC算法的后续计算。该FPGA方案通过协方差矩阵模块并行计算、特征值分解模块采用多级清扫的并行Jacobi算法、多尺度谱峰搜索和各个模块的流水线工作来减少算法耗时。试验结果表明,与复数极化MUSIC算法相比,该方案大大降低了硬件资源消耗和时间消耗。 展开更多
关键词 到达方向估计 多重信号分类算法 FPGA 极化敏感阵列
下载PDF
载频-重频联合捷变雷达目标参数估计方法 被引量:1
19
作者 刘智星 全英汇 +3 位作者 沙明辉 方文 高霞 邢孟道 《系统工程与电子技术》 EI CSCD 北大核心 2023年第2期401-406,共6页
针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的... 针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的处理,并将超分辨阵列信号处理方法应用到目标的参数估计中,从而把目标距离和速度的估计等效成阵列中二维参数的估计,解决了由于载频重频联合捷变所带来的目标参数估计难题。仿真实验表明,所提方法能有效实现对目标距离和速度的超分辨估计。 展开更多
关键词 载频重频联合捷变 多重信号分类算法 参数估计 超分辨
下载PDF
基于空间平滑算法的改进多重信号分类算法 被引量:1
20
作者 秦毅 陈向阳 《武汉工程大学学报》 CAS 2023年第4期450-455,共6页
为了提高传统解相干算法的估计精度,提出了一种基于空间平滑算法的改进多重信号分类算法。将空间平滑算法的子阵互相关产生的前向平滑修正矩阵和后向平滑修正矩阵与子阵自相关矩阵互相关产生的前向平滑修正矩阵和后向平滑修正矩阵分别相... 为了提高传统解相干算法的估计精度,提出了一种基于空间平滑算法的改进多重信号分类算法。将空间平滑算法的子阵互相关产生的前向平滑修正矩阵和后向平滑修正矩阵与子阵自相关矩阵互相关产生的前向平滑修正矩阵和后向平滑修正矩阵分别相加,得到新的前向平滑矩阵和后向平滑矩阵,再通过矩阵分解法将新的前向平滑矩阵和后向平滑矩阵进行组合,使用奇异值分解对组合后的矩阵进行分解得到信号的噪声子空间,并通过多重信号分类算法进行估计,最大限度的利用了前向平滑修正矩阵和后向平滑修正矩阵的信息。经过仿真验证,该算法在信号相干条件下能精确地估计入射角度,并且对比现有的解相干算法在信噪比相同条件下估计性能提升了9%。 展开更多
关键词 解相干 空间平滑 奇异值分解 多重信号分类算法
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部