Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructe...This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.展开更多
The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The non...The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.展开更多
The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the model...The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and A1203, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions axe derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically.展开更多
The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD bo...The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD boundary layer flow are obtained by using a method that couples the differential transform method (DTM) with the Pade approximation called DTM-Pade. The approximate solutions are expressed in the form of a power series that can be easily computed with an iterative procedure. The approximate solutions are tabulated, plotted for the values of different parameters and compared with the numerical ones obtained by employing the shooting technique. It is found that the approximate solution agrees very well with the numerical solution, showing the reliability and validity of the present work. Moreover, the effects of various physical parameters on the boundary layer flow are presented graphically and discussed.展开更多
Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. ...Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.展开更多
This paper studies stratified magnetohydrodynamic (MHD) flow of tan- gent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary cond...This paper studies stratified magnetohydrodynamic (MHD) flow of tan- gent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary conditions. The partial differential systems are reduced to ordinary differential systems using appropriate transformations. The reduced systems are solved for convergent series solutions. The velocity, temperature, and concentration fields are discussed for different physical parameters. The results indi- cate that the temperature and the thermal boundary layer thickness increase noticeably for large values of Brownian motion and thermophoresis effects. It is also observed that the buoyancy parameter strengthens the velocity field, showing a decreasing behavior of temperature and nanoparticle volume fraction profiles.展开更多
This work concerns with the exact solutions of magnetohydrodynamic(MHD)flow of generalized Burgers fluid describing the second Stokes problem. The modified Darcy law is taken into account. The related velocity distr...This work concerns with the exact solutions of magnetohydrodynamic(MHD)flow of generalized Burgers fluid describing the second Stokes problem. The modified Darcy law is taken into account. The related velocity distribution and shear stress are expressed as a combination of steady-state and transient solutions computed by means of integral transformations. The effects of various parameters on the flow field are investigated. The MHD flow results in reduction of velocity distribution and associated thickness of the boundary layer.展开更多
The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible...The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.展开更多
The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a por...The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat trans- fer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two- and three-dimensional flow phenom- ena are also shown through graphical results.展开更多
Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes m...Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.展开更多
The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The govern...The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations are then solved numerically by an algorithm based on the finite difference discretization. The results are further refined by Richardson's extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields are predicted in tabular and graphical forms to show the important features of the solution. The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.展开更多
An analytical solution to the famous Falkner-Skan equation for the magnetohydrodynamic (MHD) flow is obtained for a special case, namely, the sink flow with a velocity power index of-1. The solution is given in a cl...An analytical solution to the famous Falkner-Skan equation for the magnetohydrodynamic (MHD) flow is obtained for a special case, namely, the sink flow with a velocity power index of-1. The solution is given in a closed form. Multiple solution branches are obtained. The effects of the magnetic parameter and the wall stretching parameter are analyzed. Interesting velocity profiles are observed with reversal flow regions even for a stationary wall. These solutions provide a rare case of the Falkner-Skan MHD flow with an analytical closed form formula. They greatly enrich the analytical solution for the celebrated Falkner-Skan equation and provide better understanding of this equation.展开更多
An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity s...An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTM- BF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively.展开更多
Plasma behaviour and the scaling relations in a coaxial plasma opening switch (POS) using hydrogen plasma are studied self-consistently based on the two-dimensional magnetohydrodynamic (MHD) equations in conjuncti...Plasma behaviour and the scaling relations in a coaxial plasma opening switch (POS) using hydrogen plasma are studied self-consistently based on the two-dimensional magnetohydrodynamic (MHD) equations in conjunction with the generalized Ohm's law. The vacuum region on the right of POS is included in the model and the influence of downstream flow on the conduction characteristics is discussed. It is found that with the penetration of magnetic field, the pure hydrogen plasma is pushed downstream significantly; and POS still conducts current after the magnetic field arrives at the load edge of POS, which is different from the previous experimental results in a multispecies POS. It is because that the noticeable downstream plasma in the pure hydrogen POS may continue to conduct the current, while in the multispecies POS, the downstream plasma is unimportant so that the conduction phase ends soon after the magnetic field reaches the load edge. The scaling relation obtained from the simulations including the downstream region is consistent with the experimental results.展开更多
This paper presents an anisotropic adaptive finite element method (FEM) to solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A resid- ual error estimator is presented for the standard FE...This paper presents an anisotropic adaptive finite element method (FEM) to solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A resid- ual error estimator is presented for the standard FEM, and two-sided bounds on the error independent of the aspect ratio of meshes are provided. Based on the Zienkiewicz-Zhu es- timates, a computable anisotropic error indicator and an implement anisotropic adaptive refinement for the MHD problem are derived at different values of the Hartmann number. The most distinguishing feature of the method is that the layer information from some directions is captured well such that the number of mesh vertices is dramatically reduced for a given level of accuracy. Thus, this approach is more suitable for approximating the layer problem at high Hartmann numbers. Numerical results show efficiency of the algorithm.展开更多
This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscou...This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscous dissipation and thermal radiation,whereas the mass transport is observed under the influence of a chemical reaction.The irreversibe factor is measured through the application of the second law of thermodynamics.The established non-linear partial differential equations(PDEs)have been replaced by acceptable ordinary differential equations(ODEs),which are solved numerically via the bvp4 c method(built-in package in MATLAB).The numerical analysis of the resulting ODEs is carried out on the different flow parameters,and their effects on the rate of heat transport,friction drag,concentration,and the entropy generation are considered.It is determined that the concentration estimation and the Sherwood number reduce and enhance for higher values of the chemical reaction parameter and the Schmidt number,although the rate of heat transport is increased for the Eckert number and heat generation/absorption parameter,respectively.The entropy generation augments with boosting values of the Brinkman number,and decays with escalating values of both the radiation parameter and the Weissenberg number.展开更多
The heat transfer of the combined magnetohydrodynamic(MHD)and electroosmotic flow(EOF)of non-Newtonian fluid in a rotating microchannel is analyzed.A couple stress fluid model is scrutinized to simulate the rheologica...The heat transfer of the combined magnetohydrodynamic(MHD)and electroosmotic flow(EOF)of non-Newtonian fluid in a rotating microchannel is analyzed.A couple stress fluid model is scrutinized to simulate the rheological characteristics of the fluid.The exact solution for the energy transport equation is achieved.Subsequently,this solution is utilized to obtain the flow velocity and volume flow rates within the flow domain under appropriate boundary conditions.The obtained analytical solution results are compared with the previous data in the literature,and good agreement is obtained.A detailed parametric study of the effects of several factors,e.g.,the rotational Reynolds number,the Joule heating parameter,the couple stress parameter,the Hartmann number,and the buoyancy parameter,on the flow velocities and temperature is explored.It is unveiled that the elevation in a couple stress parameter enhances the EOF velocity in the axial direction.展开更多
This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a sim...This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.展开更多
This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have...This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.展开更多
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University of Saudi Arabia
文摘This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.
基金supported by the Fundamental Research Grant Scheme (FRGS) of the Ministry of Higher Education (MOHE) of Malaysia (No. UKM-ST-07-FRGS0036-2009)
文摘The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Nos.51276014 and51476191)the Fundamental Research Funds for the Central Universities(No.FRF-BR-12-004)
文摘The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and A1203, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions axe derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically.
基金supported by the National Natural Science Foundation of China (Nos. 50936003 and 51076012)the Open Project of State Key Laboratory for Advanced Metals and Materials (No. 2009Z-02)
文摘The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD boundary layer flow are obtained by using a method that couples the differential transform method (DTM) with the Pade approximation called DTM-Pade. The approximate solutions are expressed in the form of a power series that can be easily computed with an iterative procedure. The approximate solutions are tabulated, plotted for the values of different parameters and compared with the numerical ones obtained by employing the shooting technique. It is found that the approximate solution agrees very well with the numerical solution, showing the reliability and validity of the present work. Moreover, the effects of various physical parameters on the boundary layer flow are presented graphically and discussed.
文摘Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.
文摘This paper studies stratified magnetohydrodynamic (MHD) flow of tan- gent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary conditions. The partial differential systems are reduced to ordinary differential systems using appropriate transformations. The reduced systems are solved for convergent series solutions. The velocity, temperature, and concentration fields are discussed for different physical parameters. The results indi- cate that the temperature and the thermal boundary layer thickness increase noticeably for large values of Brownian motion and thermophoresis effects. It is also observed that the buoyancy parameter strengthens the velocity field, showing a decreasing behavior of temperature and nanoparticle volume fraction profiles.
文摘This work concerns with the exact solutions of magnetohydrodynamic(MHD)flow of generalized Burgers fluid describing the second Stokes problem. The modified Darcy law is taken into account. The related velocity distribution and shear stress are expressed as a combination of steady-state and transient solutions computed by means of integral transformations. The effects of various parameters on the flow field are investigated. The MHD flow results in reduction of velocity distribution and associated thickness of the boundary layer.
基金Project supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University of Saudi Arabia (No. HiCi/40-3/1432H)
文摘The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.
文摘The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat trans- fer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two- and three-dimensional flow phenom- ena are also shown through graphical results.
文摘Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.
文摘The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations are then solved numerically by an algorithm based on the finite difference discretization. The results are further refined by Richardson's extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields are predicted in tabular and graphical forms to show the important features of the solution. The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.
文摘An analytical solution to the famous Falkner-Skan equation for the magnetohydrodynamic (MHD) flow is obtained for a special case, namely, the sink flow with a velocity power index of-1. The solution is given in a closed form. Multiple solution branches are obtained. The effects of the magnetic parameter and the wall stretching parameter are analyzed. Interesting velocity profiles are observed with reversal flow regions even for a stationary wall. These solutions provide a rare case of the Falkner-Skan MHD flow with an analytical closed form formula. They greatly enrich the analytical solution for the celebrated Falkner-Skan equation and provide better understanding of this equation.
基金Project supported by the National Natural Science Foundation of China (Nos. 50936003 and 51076012)
文摘An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTM- BF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively.
基金National Natural Science Foundation of China(No.10376003)
文摘Plasma behaviour and the scaling relations in a coaxial plasma opening switch (POS) using hydrogen plasma are studied self-consistently based on the two-dimensional magnetohydrodynamic (MHD) equations in conjunction with the generalized Ohm's law. The vacuum region on the right of POS is included in the model and the influence of downstream flow on the conduction characteristics is discussed. It is found that with the penetration of magnetic field, the pure hydrogen plasma is pushed downstream significantly; and POS still conducts current after the magnetic field arrives at the load edge of POS, which is different from the previous experimental results in a multispecies POS. It is because that the noticeable downstream plasma in the pure hydrogen POS may continue to conduct the current, while in the multispecies POS, the downstream plasma is unimportant so that the conduction phase ends soon after the magnetic field reaches the load edge. The scaling relation obtained from the simulations including the downstream region is consistent with the experimental results.
基金Project supported by the National Natural Science Foundation of China(Nos.11471329,11321061,and 91430215)the National Magnetic Confinement Fusion Science Program of China(No.2015GB110000)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(No.2016003)the National Center for Mathematics and Interdisciplinary Sciences of CAS
文摘This paper presents an anisotropic adaptive finite element method (FEM) to solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A resid- ual error estimator is presented for the standard FEM, and two-sided bounds on the error independent of the aspect ratio of meshes are provided. Based on the Zienkiewicz-Zhu es- timates, a computable anisotropic error indicator and an implement anisotropic adaptive refinement for the MHD problem are derived at different values of the Hartmann number. The most distinguishing feature of the method is that the layer information from some directions is captured well such that the number of mesh vertices is dramatically reduced for a given level of accuracy. Thus, this approach is more suitable for approximating the layer problem at high Hartmann numbers. Numerical results show efficiency of the algorithm.
文摘This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscous dissipation and thermal radiation,whereas the mass transport is observed under the influence of a chemical reaction.The irreversibe factor is measured through the application of the second law of thermodynamics.The established non-linear partial differential equations(PDEs)have been replaced by acceptable ordinary differential equations(ODEs),which are solved numerically via the bvp4 c method(built-in package in MATLAB).The numerical analysis of the resulting ODEs is carried out on the different flow parameters,and their effects on the rate of heat transport,friction drag,concentration,and the entropy generation are considered.It is determined that the concentration estimation and the Sherwood number reduce and enhance for higher values of the chemical reaction parameter and the Schmidt number,although the rate of heat transport is increased for the Eckert number and heat generation/absorption parameter,respectively.The entropy generation augments with boosting values of the Brinkman number,and decays with escalating values of both the radiation parameter and the Weissenberg number.
文摘The heat transfer of the combined magnetohydrodynamic(MHD)and electroosmotic flow(EOF)of non-Newtonian fluid in a rotating microchannel is analyzed.A couple stress fluid model is scrutinized to simulate the rheological characteristics of the fluid.The exact solution for the energy transport equation is achieved.Subsequently,this solution is utilized to obtain the flow velocity and volume flow rates within the flow domain under appropriate boundary conditions.The obtained analytical solution results are compared with the previous data in the literature,and good agreement is obtained.A detailed parametric study of the effects of several factors,e.g.,the rotational Reynolds number,the Joule heating parameter,the couple stress parameter,the Hartmann number,and the buoyancy parameter,on the flow velocities and temperature is explored.It is unveiled that the elevation in a couple stress parameter enhances the EOF velocity in the axial direction.
文摘This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.
文摘This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.