This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed informati...This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed information on flow velocity, Lorentz force, pressure, current and electric potential of MHD duct flows for different Hartmann numbers. Also, the effect of the electric conductivity of FCI on the pressure drop along the main flow direction in a non-uniform magnetic field is examined. The present study investigates the features of LM MHD flows in consideration of the interdependency among the flow variables.展开更多
基金supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology & Ministry of knowledge Economy (Grant No. 2015M1A7A1A02050613)
文摘This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed information on flow velocity, Lorentz force, pressure, current and electric potential of MHD duct flows for different Hartmann numbers. Also, the effect of the electric conductivity of FCI on the pressure drop along the main flow direction in a non-uniform magnetic field is examined. The present study investigates the features of LM MHD flows in consideration of the interdependency among the flow variables.