This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while th...This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios.展开更多
In this paper,we consider a model of compressible isentropic two-fluid magneto-hydrodynamics without resistivity in a strip domain in three dimensional space.By exploiting the two-tier energy method developed in[Anal ...In this paper,we consider a model of compressible isentropic two-fluid magneto-hydrodynamics without resistivity in a strip domain in three dimensional space.By exploiting the two-tier energy method developed in[Anal PDE,2013,6:1429–1533],we prove the global well-posedness of the governing model around a uniform magnetic field which is non-parallel to the horizontal boundary.Moreover,we show that the solution converges to the steady state at an almost exponential rate as time goes to infinity.Compared to the work of Tan and Wang[SIAM J Math Anal,2018,50:1432–1470],we need to overcome the difficulties caused by particles.展开更多
In this paper,the unsteady magnetohydrodynamic(MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated.This problem has relevant applications in optimizing thermal ...In this paper,the unsteady magnetohydrodynamic(MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated.This problem has relevant applications in optimizing thermal management systems in electronic devices,solar energy collectors,and other industrial applications where efficient heat transfer is very important.The study is based on the application of a numerical approach using the Finite Difference Method(FDM)for the resolution of the governing equations,which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media.It was found that the increase of Hartmann number(Ha)causes a reduction of the average Nusselt number(Nu),with a maximum decrease of 25%observed as Ha increases from 0 to 50.In addition,the influence of the wall’s wave amplitude and the heat source length on the heat transfer rate was quantified,and it was revealed that at high wave amplitude,the average Nu increases by up to 15%.These findings suggest that manipulating magnetic field strength and cavity geometry can significantly enhance thermal performance.The novelty of this is related to the exploration of a U-shaped wavy cavity,which is not covered in previous studies,and to the detailed examination of the combined effects of magnetic fields,radiation,and hybrid nanofluids.展开更多
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first e...We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.展开更多
We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscal...We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.展开更多
Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant infl...Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.展开更多
We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conse...We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.展开更多
The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamicWilliamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium.In the current ana...The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamicWilliamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium.In the current analysis,the impacts of Soret and Dufour(cross-diffusion effects)have been attentively taken into consideration.Using appropriate similarity variable transformations,the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique.Numerical simulations were then perceived to show the consequence of various physical parameters on the plots of velocity,temperature,and concentration of the nanofluid flow.Boosting the magnetic,Williamson,porosity,and stretching sheet index parameters,the velocity of the fluid flow decreases.The temperature is enhanced as theWilliamson and Brownian motion parameters upsurge,but it decreases as the Prandtl,thermophoresis,stretching sheet index,and Dufour parameters escalate.The concentration distribution decreases as the thermophoresis andmagnetic parameters upsurge,but it escalates as the Soret,Schmidt,Brownian motion,and stretching sheet index parameters increase.Skin friction coefficient boosted as the stretching sheet index and magnetic parameters enhanced against the Williamson parameter.The findings from this study have been contrasted with earlier findings on local Nusselt numbers,which show substantial support and endorse the existing approach’s validity.The numerical values of the local Sherwood number gradually increase as the Schmidt,Soret,stretching sheet index,and thermophoresis parameters are upsurged.展开更多
This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic(MHD)flow through a vertical channel with heat generation.A theoretical approach is employed.The channel is exp...This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic(MHD)flow through a vertical channel with heat generation.A theoretical approach is employed.The channel is exposed to a perpendicular magnetic field,while one side experiences a periodic heat flow,and the other side undergoes a periodic temperature variation.Numerical solutions for the governing partial differential equations are obtained using a finite difference approach,complemented by an eigenfunction expansion method for analytical solutions.Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields.This offers comprehensive insights into MHD flow behavior and its interactions with the magnetic field,heat flux,viscous dissipation,and heat generation.The findings hold significance for engineering applications concerning fluid dynamics and heat transfer,offering valuable knowledge in this field.The study concludes that the transient velocity and temperature profiles exhibit periodic patterns under periodic heat flow conditions.A temperature reduction is observed with an increase in the wall temperature phase angle.In contrast,an increase in the heat flux phase angle values raises the temperature values.展开更多
The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological...The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological factors is investigated.The analysis combines a traditional numerical approach with machine learning techniques.Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods.The artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error clustering.Parametric analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and micro-rotation.The Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)increase.Variations in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt numbers.Higher(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number distribution.Increased(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt numbers.These findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer properties.By combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering.展开更多
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
Two phases of a DIII-D discharge with and without magnetohydrodynamics (MHD) activity are analysed using ONETWO code. The toroidal momentum flux is extracted from experimental data and compared with the predictions ...Two phases of a DIII-D discharge with and without magnetohydrodynamics (MHD) activity are analysed using ONETWO code. The toroidal momentum flux is extracted from experimental data and compared with the predictions by neoclassical theory, Gyro-Landau fluid transport model (GLF23) and Multi-Mode model (MMM95). It is found that without MHD activities GLF23 and MMM95 provide a reasonable description while with MHD activity no model alone can fully describe the experimental momentum flux. For the phase with MHD activity a simple model of resonant magnetic drag is tested and it cannot fully explain the plasma slowing down observed in experiment.展开更多
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon...We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.展开更多
In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small in...In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.展开更多
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasm...Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.展开更多
帕克太阳探针(Parker Solar Probe,PSP)在太阳附近发现大量磁力线回弯结构,通常还伴随有太阳风速度增加.这些磁力线回弯的产生机制到目前为止有多种解释,其中有代表性的一种是由慢太阳风中的喷流引起的.我们首先对PSP的就地观测数据进...帕克太阳探针(Parker Solar Probe,PSP)在太阳附近发现大量磁力线回弯结构,通常还伴随有太阳风速度增加.这些磁力线回弯的产生机制到目前为止有多种解释,其中有代表性的一种是由慢太阳风中的喷流引起的.我们首先对PSP的就地观测数据进行了统计分析并给出了发生率和空间尺度随径向距离的演化情况,然后使用简化的1.5维磁流体动力学(magnetohydrodynamics,MHD)模型对喷流在太阳风中的演化进行了模拟,其中太阳风被简化为位于黄道面的球对称流.模拟结果表明喷流的确可以导致太阳附近磁力线发生偏转,验证了喷流可以对磁场方向改变有贡献的图景.不过喷流形成的原因还需要进一步研究.展开更多
文摘This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios.
基金supported by the National Natural Science Foundation of China(12101095)the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0949,2022NSCQ-MSX2878,CSTC2021jcyj-msxmX0224)+2 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100517,KJQN202300542,KJQN202100511)the Research Project of Chongqing Education Commission(CXQT21014)the grant of Chongqing Young Experts’Workshop.
文摘In this paper,we consider a model of compressible isentropic two-fluid magneto-hydrodynamics without resistivity in a strip domain in three dimensional space.By exploiting the two-tier energy method developed in[Anal PDE,2013,6:1429–1533],we prove the global well-posedness of the governing model around a uniform magnetic field which is non-parallel to the horizontal boundary.Moreover,we show that the solution converges to the steady state at an almost exponential rate as time goes to infinity.Compared to the work of Tan and Wang[SIAM J Math Anal,2018,50:1432–1470],we need to overcome the difficulties caused by particles.
基金funding this research work through the project number“NBU-FFR-2024-2505-08”.
文摘In this paper,the unsteady magnetohydrodynamic(MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated.This problem has relevant applications in optimizing thermal management systems in electronic devices,solar energy collectors,and other industrial applications where efficient heat transfer is very important.The study is based on the application of a numerical approach using the Finite Difference Method(FDM)for the resolution of the governing equations,which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media.It was found that the increase of Hartmann number(Ha)causes a reduction of the average Nusselt number(Nu),with a maximum decrease of 25%observed as Ha increases from 0 to 50.In addition,the influence of the wall’s wave amplitude and the heat source length on the heat transfer rate was quantified,and it was revealed that at high wave amplitude,the average Nu increases by up to 15%.These findings suggest that manipulating magnetic field strength and cavity geometry can significantly enhance thermal performance.The novelty of this is related to the exploration of a U-shaped wavy cavity,which is not covered in previous studies,and to the detailed examination of the combined effects of magnetic fields,radiation,and hybrid nanofluids.
文摘We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
基金support from the European Space Agency(ESA)PRODEX(PROgramme de Développement d’Expériences scientifiques)Project mission(No.PEA4000134960)Partial funding was provided by the Romanian Ministry of Research,Innovation and Digitalization under Romanian National Core Program LAPLAS VII(Contract No.30N/2023)+2 种基金the Belgian Solar-Terrestrial Centre of Excellencesupported by the project Belgian Research Action through Interdisciplinary Networks(BRAIN-BE)2.0(Grant No.B2/223/P1/PLATINUM)funded by the Belgian Office for Research(BELSPO)partially supported by a grant from the Romanian Ministry of Education and Research(CNCS-UEFISCDI,Project No.PN-III-P1-1.1TE-2021-0102)。
文摘We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences,grant No.XDB 41000000National Natural Science Foundation of China(NSFC,Grant No.12288102)+4 种基金support of the National Natural Science Foundation of China(NSFC,Grant No.11973082)support of the National Natural Science Foundation of China(NSFC,Grant No.42305136)supported by the National Key R&D Program of China(Grant No.2021YFA1600400/2021YFA1600402)Natural Science Foundation of Yunnan Province(No.202201AT070158)the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)。
文摘Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.
基金support by Fondazione Cariplo and Fondazione CDP(Italy)under the project No.2022-1895.
文摘We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.
文摘The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamicWilliamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium.In the current analysis,the impacts of Soret and Dufour(cross-diffusion effects)have been attentively taken into consideration.Using appropriate similarity variable transformations,the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique.Numerical simulations were then perceived to show the consequence of various physical parameters on the plots of velocity,temperature,and concentration of the nanofluid flow.Boosting the magnetic,Williamson,porosity,and stretching sheet index parameters,the velocity of the fluid flow decreases.The temperature is enhanced as theWilliamson and Brownian motion parameters upsurge,but it decreases as the Prandtl,thermophoresis,stretching sheet index,and Dufour parameters escalate.The concentration distribution decreases as the thermophoresis andmagnetic parameters upsurge,but it escalates as the Soret,Schmidt,Brownian motion,and stretching sheet index parameters increase.Skin friction coefficient boosted as the stretching sheet index and magnetic parameters enhanced against the Williamson parameter.The findings from this study have been contrasted with earlier findings on local Nusselt numbers,which show substantial support and endorse the existing approach’s validity.The numerical values of the local Sherwood number gradually increase as the Schmidt,Soret,stretching sheet index,and thermophoresis parameters are upsurged.
文摘This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic(MHD)flow through a vertical channel with heat generation.A theoretical approach is employed.The channel is exposed to a perpendicular magnetic field,while one side experiences a periodic heat flow,and the other side undergoes a periodic temperature variation.Numerical solutions for the governing partial differential equations are obtained using a finite difference approach,complemented by an eigenfunction expansion method for analytical solutions.Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields.This offers comprehensive insights into MHD flow behavior and its interactions with the magnetic field,heat flux,viscous dissipation,and heat generation.The findings hold significance for engineering applications concerning fluid dynamics and heat transfer,offering valuable knowledge in this field.The study concludes that the transient velocity and temperature profiles exhibit periodic patterns under periodic heat flow conditions.A temperature reduction is observed with an increase in the wall temperature phase angle.In contrast,an increase in the heat flux phase angle values raises the temperature values.
基金Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through theResearch Group Project underGrant Number(RGP.2/610/45)funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R102)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological factors is investigated.The analysis combines a traditional numerical approach with machine learning techniques.Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods.The artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error clustering.Parametric analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and micro-rotation.The Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)increase.Variations in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt numbers.Higher(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number distribution.Increased(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt numbers.These findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer properties.By combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering.
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
基金supported by National Natural Science Foundation of China (No. 10475077) the US Department of Energy (DE-FG03-95ER54309 and DE-FC02-04ER54698)+1 种基金 International Scientific Cooperation Project of China (No. 2007DFA01290)the Center for Computational Science, Hefei Institutes of Physical Sciences
文摘Two phases of a DIII-D discharge with and without magnetohydrodynamics (MHD) activity are analysed using ONETWO code. The toroidal momentum flux is extracted from experimental data and compared with the predictions by neoclassical theory, Gyro-Landau fluid transport model (GLF23) and Multi-Mode model (MMM95). It is found that without MHD activities GLF23 and MMM95 provide a reasonable description while with MHD activity no model alone can fully describe the experimental momentum flux. For the phase with MHD activity a simple model of resonant magnetic drag is tested and it cannot fully explain the plasma slowing down observed in experiment.
基金LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021,Grant SA77210040。
文摘We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.
基金supported by the Opening Project of Guangdong Province Key Laboratory of Cyber-Physical System(20168030301008)supported by the National Natural Science Foundation of China(11126266)+4 种基金the Natural Science Foundation of Guangdong Province(2016A030313390)the Quality Engineering Project of Guangdong Province(SCAU-2021-69)the SCAU Fund for High-level University Buildingsupported by the National Key Research and Development Program of China(2020YFA0712500)the National Natural Science Foundation of China(11971496,12126609)。
文摘In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
基金supported by the Open Fund of Magnetic Confinement Laboratory of Anhui Province(No.2023 AMF03005)the China Postdoctoral Science Foundation(No.2021M703256)+4 种基金the Director Funding of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN16)the National Key R&D Program of China(Nos.2022YFE03050003,2019YFE03080200,2019Y FE03040002,and 2022YFE03070004)National Natural Science Foundation of China(Nos.12075284,12175277,12275315 and 12275311)the National Magnetic Confinement Fusion Science Program of China(No.2022YFE03040001)the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-08)。
文摘Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.
文摘帕克太阳探针(Parker Solar Probe,PSP)在太阳附近发现大量磁力线回弯结构,通常还伴随有太阳风速度增加.这些磁力线回弯的产生机制到目前为止有多种解释,其中有代表性的一种是由慢太阳风中的喷流引起的.我们首先对PSP的就地观测数据进行了统计分析并给出了发生率和空间尺度随径向距离的演化情况,然后使用简化的1.5维磁流体动力学(magnetohydrodynamics,MHD)模型对喷流在太阳风中的演化进行了模拟,其中太阳风被简化为位于黄道面的球对称流.模拟结果表明喷流的确可以导致太阳附近磁力线发生偏转,验证了喷流可以对磁场方向改变有贡献的图景.不过喷流形成的原因还需要进一步研究.