With the discovery of giant magnetoresistance(GMR),research effort has been made to exploiting the influence of spins on the mobility of electrons in ferromagnetic materials and/or artificial structures,which has lead...With the discovery of giant magnetoresistance(GMR),research effort has been made to exploiting the influence of spins on the mobility of electrons in ferromagnetic materials and/or artificial structures,which has lead to the idea of spintronics.A brief introduction is given to GMR effects from scientific background to experimental observations and theoretical models.In addition,the mechanisms of various magnetoresistance beyond the GMR are reviewed,for instance,tunnelling magnetoresistance,colossal magnetoresistance,and magnetoresistance in ferromagnetic semiconductors,nanowires,organic spintronics and non-magnetic systems.展开更多
Epitaxial La2/3Ca1/3 MnO3 thin films were prepared on NdGaO3(110) substrates by d. c. magnetron sputtering method. The measurements of magnetoresistance ρ(H) upon magnetic field at different temperatures were carried...Epitaxial La2/3Ca1/3 MnO3 thin films were prepared on NdGaO3(110) substrates by d. c. magnetron sputtering method. The measurements of magnetoresistance ρ(H) upon magnetic field at different temperatures were carried out in the field range of 0 - 8 T. It is found that p(H) obeys the following relations: when the temperature(T) is higher than the Curie temperature Tc, ρ ( H ) =1/α(T)+β(T)H2; below Tc, ρ ( H ) = ρ0 ( T ) 1/A(T)+B(T)exp(H/C(Y)),and ρ(H) =1/κa(T)+γ(T)H when T is far below TC. It is Suggested that the negative magnetoresistive effect is mainly due to enhancement of the magnetoconductance.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51125004,10974120,B13029 and JQ200901)the National Basic Research Program of China (Grant Nos. 2013CB922303and 2009CB929202)
文摘With the discovery of giant magnetoresistance(GMR),research effort has been made to exploiting the influence of spins on the mobility of electrons in ferromagnetic materials and/or artificial structures,which has lead to the idea of spintronics.A brief introduction is given to GMR effects from scientific background to experimental observations and theoretical models.In addition,the mechanisms of various magnetoresistance beyond the GMR are reviewed,for instance,tunnelling magnetoresistance,colossal magnetoresistance,and magnetoresistance in ferromagnetic semiconductors,nanowires,organic spintronics and non-magnetic systems.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19504012) the Chinese Academy of Sciences
文摘Epitaxial La2/3Ca1/3 MnO3 thin films were prepared on NdGaO3(110) substrates by d. c. magnetron sputtering method. The measurements of magnetoresistance ρ(H) upon magnetic field at different temperatures were carried out in the field range of 0 - 8 T. It is found that p(H) obeys the following relations: when the temperature(T) is higher than the Curie temperature Tc, ρ ( H ) =1/α(T)+β(T)H2; below Tc, ρ ( H ) = ρ0 ( T ) 1/A(T)+B(T)exp(H/C(Y)),and ρ(H) =1/κa(T)+γ(T)H when T is far below TC. It is Suggested that the negative magnetoresistive effect is mainly due to enhancement of the magnetoconductance.