Co2MnSi thin films are made by magnetron sputtering onto MgO (001) substrates. The crystalline quality is improved by increasing depositing temperature and/or annealing temperature. The sample deposited at 550℃ and...Co2MnSi thin films are made by magnetron sputtering onto MgO (001) substrates. The crystalline quality is improved by increasing depositing temperature and/or annealing temperature. The sample deposited at 550℃ and subsequently annealed at 550℃ (sample I) exhibits a pseudo-epitaxial growth with partially ordered L21 phase. Sample I shows a four-fold magnetic anisotropy, in addition to a relatively weak uniaxial anisotropy. The Gilbert damping factor of sample I is smaller than 0.001, much smaller than reported ones. The possible reasons responsible for the small Gilbert damping factor are discussed, including weak spin-orbit coupling, small density of states at Fermi level, and so on.展开更多
Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited s...Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited strong perpendicular magnetic anisotropy when the ratio of [-Co^2+ ] to [-Pt^Ⅳ ] was 10 ; cathode current efficiency and perpendicular magnetic anisotropy showed little variations when [WO4^2- ] was lower than 0. 1 mol/L, but perpendicular magnetic anisotropy had strengthened when [WO4^2-] was over 0. 1 mol/L, which could be explained by the fact that the hydrogen evolution could produce pores as magnetic domain pinnings; citrate as complexing reagent can promote the polarization of [Co^2+] and [Pt^Ⅳ]. As a result, the equilibrium electrode potentials of cobalt and platinum moved to negative direction, which led to the co-deposition of Co, Pt, and W. It was also found out that the as-deposited Co- Pt-W hard magnetic thin films were very homogeneous, smooth, and had the maximum coercivity for the bath pH 8. 5 and the concentration of citrate 0. 26 mol/L.展开更多
Epitaxial (0001)-oriented Zn1-xCoxO (x= 0.01, 0.05 and 0.1) thin films were grown on c-sapphire substrates by pulsed laser deposition. The XRD analysis, optical transmittance and XPS measurements revealed that the...Epitaxial (0001)-oriented Zn1-xCoxO (x= 0.01, 0.05 and 0.1) thin films were grown on c-sapphire substrates by pulsed laser deposition. The XRD analysis, optical transmittance and XPS measurements revealed that the Co2+ substituted Zn2+ ions were incorporated into the lattice of ZnO in Zn1-xCoxO thin films. The electrical properties measurements revealed that the Co concentration had a non- monotonic influence on the electrical properties of the Zn1-xCoxO thin films due to the defects resulted from imperfections induced by Co substitution. The resistivity remarkably increased and the carrier concentration remarkably decreased in Zn1-x CoxO thin films after oxygen annealing at 600 ℃ under 15 Pa O2 pressure for 60 mins. Room-temperature ferromagnetic was observed and the ferromagnetic Co amount was smaller than the nominal Co concentration for Zn1-xCoxO samples before oxygen annealing. After oxygen annealing, the Zn1-x CoxO thin films exhibited paramagnetic behavior. It is suggested that the room-temperature ferromagnetic ofZn1-x CoxO thin films may attribute to defects or carriers induced mechanism.展开更多
Fe-N thin films were fabricated on both 100Si and NaCl substrates by RF magnetron sputtering under low nitrogen partial pressure. The microstructure and magnetic properties of Fe-N thin films were investigated with th...Fe-N thin films were fabricated on both 100Si and NaCl substrates by RF magnetron sputtering under low nitrogen partial pressure. The microstructure and magnetic properties of Fe-N thin films were investigated with the increase of the substrate temperature (Ts) and the annealing temperature (Ta). It is more difficult for nitrogen atoms to enter the Fe lattice under higher Ts above 150℃. The phase evolution is visible at higher Ta above 200℃. The phase transformation of α''-Fe16N2 occurred at 400℃. The change of crystal size with Ta was clearly visible from bright and dark field images. The clear high-resolution electron microscope (HREM) images of 110α, 111γ', 112α'', and 200α'' phases were observed. The interplanar distances from TEM (transmission electron microscope) and HREM match the calculated values very well. From the results of the vibrating sample magnetometer (VSM), the good magnetic properties of Fe-N films were obtained at 150℃ of Ts and 200℃ of Ta, respectively.展开更多
Magnetic Co-P thin films were prepared by electroless deposition. The experiment results show that the film thickness has a significant influence on the coercivity. While the film thickness varied from 300 nm to 5 μm...Magnetic Co-P thin films were prepared by electroless deposition. The experiment results show that the film thickness has a significant influence on the coercivity. While the film thickness varied from 300 nm to 5 μm,the coercivity dropped sharply from 45.36 to 22.28 kA/m. As the film thickness increased further,the coercivity varied slowly. When the thickness of the film was 300 nm,the deposited film could realize the coercivity as high as 45.36 kA/m,and the remanent magnetization as high as 800 kA/m .The Co-P films were deposited on the surface of magnetic drums of encoders,whose diameter was 40 mm,and then 512 magnetic poles were recorded,meaning that the magnetizing pitch was 0.245 mm. The testing results indicate that the output signals are perfect,the output waveforms are steady and the pulses account is integral. Compared with the γ-Fe2O3 coating,the Co-P thin film is suitable to be the magnetic recording media for the high resolution magnetic rotary encoder.展开更多
Fe-Cu thin films of 0.2 mum in thickness with different Cu contents wereprepared by using r.f. magnetron sputtering onto glass substrate. The effect of sputteringparameters, including Ar gas pressure and input rf powe...Fe-Cu thin films of 0.2 mum in thickness with different Cu contents wereprepared by using r.f. magnetron sputtering onto glass substrate. The effect of sputteringparameters, including Ar gas pressure and input rf power, on the structure and magnetic propertieswas investigated. It was found that when the power is lower than 70W, the structure of the filmsremained single bcc-Fe phase with Cu solubility of up to 50at. percent. TEM observations for thebcc-Fe phase showed that the grain size was in the nanometer range of less than 20nm. The coercivityof Fe- Cu films was largely affected by not only Ar gas pressure but also rf power, and reachedabout 2.5Oe in the pressure of 0.67-6.67Pa and in the power of less than 100W. In addition,saturation magnetization, with Cu content less than 60at. percent, was about proportional to thecontent of bcc-Fe. When Cu content was at 60at. percent, however, saturation magnetization was muchsmaller than its calculation value.展开更多
We present a detailed investigation of magnetic properties of colossal magnetoresistance material HgCr2Se4. While spontaneous magnetization and zero-field magnetic susceptibility are found to follow asymptotic scaling...We present a detailed investigation of magnetic properties of colossal magnetoresistance material HgCr2Se4. While spontaneous magnetization and zero-field magnetic susceptibility are found to follow asymptotic scaling laws for a narrow range of temperatures near the critical point, two methods with connections to the renormalization group theory provide analytical descriptions of the magnetic properties for much wider temperature ranges. Based on this, an analytical formula is obtained for the temperature dependence of the low field magnetoresistance in the paramagnetic phase.展开更多
A series of (Ni50Fe50)x(SiO2)(1-x) films with different volume fraction x was fabricated by magnetron co-sputtering technique. The microstructure, magnetic and electrical properties were investigated systematically by...A series of (Ni50Fe50)x(SiO2)(1-x) films with different volume fraction x was fabricated by magnetron co-sputtering technique. The microstructure, magnetic and electrical properties were investigated systematically by using X-ray diffraction, transmission electronic microscope, vibrating sample magnetometer and the traditional four point measurement method of resistivity. The results show that the samples consist of nano-scaled Ni50Fe50 metallic particles with fcc structure uniformly embedded in amorphous insulating SiO2 matrix, and the particle size decreases with the decrease of x. The rapid change of coercivity with x is observed, and a minimum value 160 A·m-1 of Hc was obtained for the sample of x=0.83 with film thickness of 180 nm, which can be contributed to the exchange coupling between nano-scaled Ni50Fe50 particles. At the frequency lower than 1 GHz, the real part μ′ of complex permeability keeps about 110 and the image part μ″ is less than 15. Besides, this film exhibits high resistivity ρ=263 μΩ·cm, high saturation magnetization 4πMs=1.25 T, high in-plane magnetic anisotropy field Hk=6.37 kA·m-1, and the ferromagnetic resonance (FMR) frequency is estimated to be 2.8 GHz. Therefore, this film can be used in high frequency devices operating over 2 GHz.展开更多
Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising film with different single-ion anisotropies are investigated, by the use of Monte Carlo simulation based on heat bath algorithms. The effec...Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising film with different single-ion anisotropies are investigated, by the use of Monte Carlo simulation based on heat bath algorithms. The effects of the crystal-fields and the surface coupling on the phase diagrams are investigated in detail and the obtained phase diagrams are presented. Depending on the Hamiltonian parameters, the system exhibits both second-and first-order phase transitions besides tricritical point, triple point, and isolated critical end point.展开更多
A series of nanocomposite thin films, composed of Nd2Fe14B and α-Fe, has been prepared by DC-magnetron sputtering combined ion beam sputtering onto Si (100) substrates. The effects of post annealing on the microstruc...A series of nanocomposite thin films, composed of Nd2Fe14B and α-Fe, has been prepared by DC-magnetron sputtering combined ion beam sputtering onto Si (100) substrates. The effects of post annealing on the microstructure and magnetic properties of [NdFeB/α-Fe/NdFeB]-type thin films have been investigated. The X-ray diffraction (XRD) study showed that annealing of the films for 30 min at temperatures 550, 600, 650, 700 ℃ resulted in the appearance of diffraction peaks, characteristic for Nd2Fe14B tetragonal structure, α-Fe and Nd2O3 phases. The investigation using the Vibrating Sample Magnetometer (VSM) with a maximum applied field of 2 T indicated that with the increase of the annealing temperature, the magnetic properties of the multilayer films were improved and reached peak value at 650 ℃ (Hci=41.72 kA·m-1, Mr/Ms=0.4, (BH)max=30.35 kJ·m-3), after which the magnetic properties were decreased greatly. Along with the increase of the thickness of α-Fe layer from Tα-Fe>16 nm, the coercivity Hci, saturation magnetization Ms, and remanence ratio Mr/Ms all declined. As the Atomic Force Microscope (AFM) indicated, after being annealed at 650 ℃ for 30 min, the sample was showed fine surface morphology with grain size 60 nm≤dα-Fe≤80 nm and 100 nm≤dNdFeB≤150 nm.展开更多
Ti4+ substitution for Fe3+ in Ni0.5Zn0.5Fe2O4(NZF) ferrite thin films were realized by sol-gel method and annealing at 600 ℃ for 30 min in the air. Crystal structure and lattice constant determination was performed b...Ti4+ substitution for Fe3+ in Ni0.5Zn0.5Fe2O4(NZF) ferrite thin films were realized by sol-gel method and annealing at 600 ℃ for 30 min in the air. Crystal structure and lattice constant determination was performed by X-ray diffractometer(XRD). Surface microstructure was observed by scanning electron microscope(SEM) and atomic force microscope(AFM),and the magnetic properties were measured by vibrating sample magnetometer(VSM). XRD analyses of the samples show that Ni0.5+xZn0.5TixFe2-2xO4(NZTF) films with x varying from 0 to 0.15 in steps of 0.05 are composed of single phase with spinel structure. And the lattice parameter,particle size and the diffraction intensity of the films increase with substitution of Ti as the result of the larger radius ions entering the lattice. SEM and AFM show homogeneous grain size of each sample,but there is a few differences in grain size with different Ti-substitution contents. As the nonmagnetic Ti4+ substitutes Fe3+,both the saturation magnetization and coercivity decrease.展开更多
The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films ar...The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.展开更多
Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples...Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples calcined at and above 600 ℃ have a single-phase spinel structure and the average grain size of the sample calcined at 600 ℃ is about 20 nm. The initial permeability μi, saturation magnetization M and coercivity H of the samples increase with the increasing calcination temperature. The sample calcined at 600 ℃ exhibits an excellent soft magnetic performance, which has μi=33.97 (10 MHz), Hc=15.62 Oe and Ms=228.877 emu/cm^3. Low-temperature annealing can enhance the magnetic properties of the samples. The work shows that using the sol-gel method in conjunction with RTA is a promising way to fabricate integrated thin-film devices.展开更多
We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for ...We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for the inforcom technologies. GHz magnetic properties of the soft magnetic thin films with in-plane anisotropy were investigated. It is found that several hundreds of permeability at the GHz frequency was achieved for Col00_xZrx and Co90Nbl0 metallic thin films because of their high satu- ration magnetization, and an adjustable resonance frequency from 1.3 to 4.9 GHz was obtained. Compared with the metallic thin films, the weaker saturation magnetization of Ni-Zn ferrite thin films results in several tens of permeability at the GHz frequency, but the larger resistivity of the ferrite prepared in situ without any heating treatments has lower energy loss. In order to obtain materials with large permeability and low energy loss in the GHz range, the [CoFe-NiZn ferrite] composite granular thin films were investigated, where the advantage of higher saturation magnetization for the metallic alloy and the high resis- tivity as well as high saturation magnetization for the ferrite results in a good GHz magnetic performance.展开更多
CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-...CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-ray spectroscope(EDS) and X-ray diffractometer(XRD).The soft magnetic properties were investigated through vibrating sample magnetometer(VSM).The corrosion resistance was investigated through Tafel polarization and electrochemical impedance spectroscopic(EIS).The results show that all the electrodeposited CoNiFe,CoNiFeB and CoNiFeP films are mixtures of crystalline and amorphous phases,and high amount of boron/phosphorus-containing additives favors the formation of amorphous state.Nanostructure is obtained in CoNiFe and CoNiFeB films.The inclusion of boron causes the film more dense and also increases its corrosion resistance.Meanwhile,the inclusion of boron lowers its coercivity(Hc) from 851.48 A/m to 604.79 A/m,but the saturation magnetic flux density(Bs) is almost unchanged.However,the addition of phosphorus greatly increases the film particle size and decreases its corrosion stability.The coercivity(Hc) of CoNiFeP film is also highly increased to 12485.79 A/m,and its saturation magnetic flux density(Bs) is greatly decreased to 1.25 T.展开更多
Ag/[BN/CoPt]5/Ag and [BN/Ag/CoPt]5/Ag thin films were deposited on glass substrates by magnetron sputtering and then annealed in vac- uum at 600 ℃ for 30 min. The structures and magnetic properties of CoPt/BN multila...Ag/[BN/CoPt]5/Ag and [BN/Ag/CoPt]5/Ag thin films were deposited on glass substrates by magnetron sputtering and then annealed in vac- uum at 600 ℃ for 30 min. The structures and magnetic properties of CoPt/BN multilayer films were investigated as a function of Ag layer thickness. It was found that the face-centered tetragonal (fct) (001) texture of CoPt was improved greatly by introducing the Ag toplayer or sublayer together with an Ag underlayer. Good (001)-oriented growth, low intergrain interactions as well as high perpendicular anisotropy can be obtained in the Ag(3 nm)/[BN(2.5 nm)/CoPt(3 nm)]5/Ag(7 nm) and [BN(2.5 nm)/Ag(2 nm)/CoPt(3 nm)]5/Ag(10 nm) films, which become potential candidates for ultrahigh density magnetic recording media.展开更多
A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and ...A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and magnetic properties. The optical properties of the films can be effectively tuned by adjusting the thickness of the PAA template. The deposition of Co nanowires greatly increases the color saturation of the PAA films. The theoretical results of the changes in structural color according to the Bragg-Snell formula are consistent with the experimental results. PAA@Co films can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting applications.展开更多
The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic pr...The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic properties and phases under different sandwich and annealing conditions were studied. In MIM structure, the incorporation of the interlayer iron does increase the magnetization measured under 8 kOe (M_8K), but reduce coercivity (H_c). The H_c of asdeposited films decreases from 354 Oe to 74 Oe; while M_8K increases from 254 to 392 emu/cc. By annealing in air, the whole MIM tri-layer film becomes γ-F_e2O_3, H_c is about 550 O_e and M_8K is around 250 emu/cc. The coercivity mechanism of as-deposited and annealed MIM trilayer films belongs to domain-wall pinning type. δM plots show that when the interlayer Fe thickness is 12 um, the Fe and Fe_3O_4 layers are decoupled in the as-deposited and annealed states; while it is coupled in the as deposited state when the Fe thickness increases to 23 um. Vacuum annealing of the MIM films leads to increase in both coercivity and magnetization, and to enhance the exchange coupling between layers.展开更多
Ni-Fe/Cu/Co/Cu multilayered nanowire arrays were electrodeposited into anodic aluminum oxide template by using dual-bath method at room temperature. Scanning electron microscopy and transmission electron microscopy we...Ni-Fe/Cu/Co/Cu multilayered nanowire arrays were electrodeposited into anodic aluminum oxide template by using dual-bath method at room temperature. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology and structure of the multilayered nanowire arrays. Vibrating sample magnetometer and physical property measurement system were used to measure their magnetic and giant magnetoresistance (GMR) properties. The effect of sub-layer thickness on the magnetic and GMR properties was investigated. The results indicate that magnetic properties of electmdeposited nanowires are not affected obviously by Cu layer thickness, while magnetic layers (Ni-Fe and Co layers) have significant influence. In addition, GMR ratio presents an oscillatory behavior as Cu layer thickness changes. The magnetic and GMR properties of the multilayered nanowire arrays are optimum at room temperature for the material structure of Ni-Fe (25 nm)/Cu (15 nm)/Co (25 nm)/Cu (15 nm) with 30 deposition cycles.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2015CB921502the National Natural Science Foundation of China under Grant Nos 11474184 and 11174183+3 种基金the 111 Project under Grant No B13029the Natural Science Foundation of Shandong Province under Grant No JQ201201the Doctorate Foundation of Shandong Province under Grant No BS2013CL042the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11204164
文摘Co2MnSi thin films are made by magnetron sputtering onto MgO (001) substrates. The crystalline quality is improved by increasing depositing temperature and/or annealing temperature. The sample deposited at 550℃ and subsequently annealed at 550℃ (sample I) exhibits a pseudo-epitaxial growth with partially ordered L21 phase. Sample I shows a four-fold magnetic anisotropy, in addition to a relatively weak uniaxial anisotropy. The Gilbert damping factor of sample I is smaller than 0.001, much smaller than reported ones. The possible reasons responsible for the small Gilbert damping factor are discussed, including weak spin-orbit coupling, small density of states at Fermi level, and so on.
基金Item Sponsored by National Natural Science Foundation of China(20571067)
文摘Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited strong perpendicular magnetic anisotropy when the ratio of [-Co^2+ ] to [-Pt^Ⅳ ] was 10 ; cathode current efficiency and perpendicular magnetic anisotropy showed little variations when [WO4^2- ] was lower than 0. 1 mol/L, but perpendicular magnetic anisotropy had strengthened when [WO4^2-] was over 0. 1 mol/L, which could be explained by the fact that the hydrogen evolution could produce pores as magnetic domain pinnings; citrate as complexing reagent can promote the polarization of [Co^2+] and [Pt^Ⅳ]. As a result, the equilibrium electrode potentials of cobalt and platinum moved to negative direction, which led to the co-deposition of Co, Pt, and W. It was also found out that the as-deposited Co- Pt-W hard magnetic thin films were very homogeneous, smooth, and had the maximum coercivity for the bath pH 8. 5 and the concentration of citrate 0. 26 mol/L.
基金Funded by New Century Excellent Talents in University(No.NCET-10-0662)International Science and Technology Cooperation Project of Hubei Province(No.2010BFA017)International Science&Technology Cooperation Program of China(No.2011DFA52650)
文摘Epitaxial (0001)-oriented Zn1-xCoxO (x= 0.01, 0.05 and 0.1) thin films were grown on c-sapphire substrates by pulsed laser deposition. The XRD analysis, optical transmittance and XPS measurements revealed that the Co2+ substituted Zn2+ ions were incorporated into the lattice of ZnO in Zn1-xCoxO thin films. The electrical properties measurements revealed that the Co concentration had a non- monotonic influence on the electrical properties of the Zn1-xCoxO thin films due to the defects resulted from imperfections induced by Co substitution. The resistivity remarkably increased and the carrier concentration remarkably decreased in Zn1-x CoxO thin films after oxygen annealing at 600 ℃ under 15 Pa O2 pressure for 60 mins. Room-temperature ferromagnetic was observed and the ferromagnetic Co amount was smaller than the nominal Co concentration for Zn1-xCoxO samples before oxygen annealing. After oxygen annealing, the Zn1-x CoxO thin films exhibited paramagnetic behavior. It is suggested that the room-temperature ferromagnetic ofZn1-x CoxO thin films may attribute to defects or carriers induced mechanism.
基金supported by the National Natural Science Foundation of China(No.50674071)Tianjin Natural Science Foundation of China(No.06YFJZJC01300)+1 种基金the Program for New Century Excellent Talents in University(NCET-06-0245)the Platform Project of Tianjin for Innovation in Science and Technology and Environmental Construction(No.06TXTJJC13900).
文摘Fe-N thin films were fabricated on both 100Si and NaCl substrates by RF magnetron sputtering under low nitrogen partial pressure. The microstructure and magnetic properties of Fe-N thin films were investigated with the increase of the substrate temperature (Ts) and the annealing temperature (Ta). It is more difficult for nitrogen atoms to enter the Fe lattice under higher Ts above 150℃. The phase evolution is visible at higher Ta above 200℃. The phase transformation of α''-Fe16N2 occurred at 400℃. The change of crystal size with Ta was clearly visible from bright and dark field images. The clear high-resolution electron microscope (HREM) images of 110α, 111γ', 112α'', and 200α'' phases were observed. The interplanar distances from TEM (transmission electron microscope) and HREM match the calculated values very well. From the results of the vibrating sample magnetometer (VSM), the good magnetic properties of Fe-N films were obtained at 150℃ of Ts and 200℃ of Ta, respectively.
基金the Foundation of Science & Technology and Industry for National Defence (NoA1420060203)
文摘Magnetic Co-P thin films were prepared by electroless deposition. The experiment results show that the film thickness has a significant influence on the coercivity. While the film thickness varied from 300 nm to 5 μm,the coercivity dropped sharply from 45.36 to 22.28 kA/m. As the film thickness increased further,the coercivity varied slowly. When the thickness of the film was 300 nm,the deposited film could realize the coercivity as high as 45.36 kA/m,and the remanent magnetization as high as 800 kA/m .The Co-P films were deposited on the surface of magnetic drums of encoders,whose diameter was 40 mm,and then 512 magnetic poles were recorded,meaning that the magnetizing pitch was 0.245 mm. The testing results indicate that the output signals are perfect,the output waveforms are steady and the pulses account is integral. Compared with the γ-Fe2O3 coating,the Co-P thin film is suitable to be the magnetic recording media for the high resolution magnetic rotary encoder.
基金This research is sponsored by the National Natural Science Foundation of China (Grant No.69971006).
文摘Fe-Cu thin films of 0.2 mum in thickness with different Cu contents wereprepared by using r.f. magnetron sputtering onto glass substrate. The effect of sputteringparameters, including Ar gas pressure and input rf power, on the structure and magnetic propertieswas investigated. It was found that when the power is lower than 70W, the structure of the filmsremained single bcc-Fe phase with Cu solubility of up to 50at. percent. TEM observations for thebcc-Fe phase showed that the grain size was in the nanometer range of less than 20nm. The coercivityof Fe- Cu films was largely affected by not only Ar gas pressure but also rf power, and reachedabout 2.5Oe in the pressure of 0.67-6.67Pa and in the power of less than 100W. In addition,saturation magnetization, with Cu content less than 60at. percent, was about proportional to thecontent of bcc-Fe. When Cu content was at 60at. percent, however, saturation magnetization was muchsmaller than its calculation value.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61425015,11474330 and 11374337the National Basic Research Program of China under Grant Nos 2012CB921703 and 2015CB921102the Chinese Academy of Sciences
文摘We present a detailed investigation of magnetic properties of colossal magnetoresistance material HgCr2Se4. While spontaneous magnetization and zero-field magnetic susceptibility are found to follow asymptotic scaling laws for a narrow range of temperatures near the critical point, two methods with connections to the renormalization group theory provide analytical descriptions of the magnetic properties for much wider temperature ranges. Based on this, an analytical formula is obtained for the temperature dependence of the low field magnetoresistance in the paramagnetic phase.
文摘A series of (Ni50Fe50)x(SiO2)(1-x) films with different volume fraction x was fabricated by magnetron co-sputtering technique. The microstructure, magnetic and electrical properties were investigated systematically by using X-ray diffraction, transmission electronic microscope, vibrating sample magnetometer and the traditional four point measurement method of resistivity. The results show that the samples consist of nano-scaled Ni50Fe50 metallic particles with fcc structure uniformly embedded in amorphous insulating SiO2 matrix, and the particle size decreases with the decrease of x. The rapid change of coercivity with x is observed, and a minimum value 160 A·m-1 of Hc was obtained for the sample of x=0.83 with film thickness of 180 nm, which can be contributed to the exchange coupling between nano-scaled Ni50Fe50 particles. At the frequency lower than 1 GHz, the real part μ′ of complex permeability keeps about 110 and the image part μ″ is less than 15. Besides, this film exhibits high resistivity ρ=263 μΩ·cm, high saturation magnetization 4πMs=1.25 T, high in-plane magnetic anisotropy field Hk=6.37 kA·m-1, and the ferromagnetic resonance (FMR) frequency is estimated to be 2.8 GHz. Therefore, this film can be used in high frequency devices operating over 2 GHz.
文摘Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising film with different single-ion anisotropies are investigated, by the use of Monte Carlo simulation based on heat bath algorithms. The effects of the crystal-fields and the surface coupling on the phase diagrams are investigated in detail and the obtained phase diagrams are presented. Depending on the Hamiltonian parameters, the system exhibits both second-and first-order phase transitions besides tricritical point, triple point, and isolated critical end point.
基金Project supported by Natural Science Foundation of Shanxi Province (20021067)
文摘A series of nanocomposite thin films, composed of Nd2Fe14B and α-Fe, has been prepared by DC-magnetron sputtering combined ion beam sputtering onto Si (100) substrates. The effects of post annealing on the microstructure and magnetic properties of [NdFeB/α-Fe/NdFeB]-type thin films have been investigated. The X-ray diffraction (XRD) study showed that annealing of the films for 30 min at temperatures 550, 600, 650, 700 ℃ resulted in the appearance of diffraction peaks, characteristic for Nd2Fe14B tetragonal structure, α-Fe and Nd2O3 phases. The investigation using the Vibrating Sample Magnetometer (VSM) with a maximum applied field of 2 T indicated that with the increase of the annealing temperature, the magnetic properties of the multilayer films were improved and reached peak value at 650 ℃ (Hci=41.72 kA·m-1, Mr/Ms=0.4, (BH)max=30.35 kJ·m-3), after which the magnetic properties were decreased greatly. Along with the increase of the thickness of α-Fe layer from Tα-Fe>16 nm, the coercivity Hci, saturation magnetization Ms, and remanence ratio Mr/Ms all declined. As the Atomic Force Microscope (AFM) indicated, after being annealed at 650 ℃ for 30 min, the sample was showed fine surface morphology with grain size 60 nm≤dα-Fe≤80 nm and 100 nm≤dNdFeB≤150 nm.
文摘Ti4+ substitution for Fe3+ in Ni0.5Zn0.5Fe2O4(NZF) ferrite thin films were realized by sol-gel method and annealing at 600 ℃ for 30 min in the air. Crystal structure and lattice constant determination was performed by X-ray diffractometer(XRD). Surface microstructure was observed by scanning electron microscope(SEM) and atomic force microscope(AFM),and the magnetic properties were measured by vibrating sample magnetometer(VSM). XRD analyses of the samples show that Ni0.5+xZn0.5TixFe2-2xO4(NZTF) films with x varying from 0 to 0.15 in steps of 0.05 are composed of single phase with spinel structure. And the lattice parameter,particle size and the diffraction intensity of the films increase with substitution of Ti as the result of the larger radius ions entering the lattice. SEM and AFM show homogeneous grain size of each sample,but there is a few differences in grain size with different Ti-substitution contents. As the nonmagnetic Ti4+ substitutes Fe3+,both the saturation magnetization and coercivity decrease.
基金supported by the National Natural Science Foundation of China(Grant No.61474103)the Chinese Scholarship Council(CSC)Fellowship for H.Tariq Masood and Z.Muhammad
文摘The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.
基金the National Natural Science Foundation of China (No. 90607021).
文摘Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples calcined at and above 600 ℃ have a single-phase spinel structure and the average grain size of the sample calcined at 600 ℃ is about 20 nm. The initial permeability μi, saturation magnetization M and coercivity H of the samples increase with the increasing calcination temperature. The sample calcined at 600 ℃ exhibits an excellent soft magnetic performance, which has μi=33.97 (10 MHz), Hc=15.62 Oe and Ms=228.877 emu/cm^3. Low-temperature annealing can enhance the magnetic properties of the samples. The work shows that using the sol-gel method in conjunction with RTA is a promising way to fabricate integrated thin-film devices.
基金supported by the National Natural Science Foundation of China (Grant No. 11034004)National Science Fund for Distinguished Young Scholars (Grant No. 50925103)+1 种基金Key Grant Project of Chinese Ministry of Education (Grant No. 309027)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-219)
文摘We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for the inforcom technologies. GHz magnetic properties of the soft magnetic thin films with in-plane anisotropy were investigated. It is found that several hundreds of permeability at the GHz frequency was achieved for Col00_xZrx and Co90Nbl0 metallic thin films because of their high satu- ration magnetization, and an adjustable resonance frequency from 1.3 to 4.9 GHz was obtained. Compared with the metallic thin films, the weaker saturation magnetization of Ni-Zn ferrite thin films results in several tens of permeability at the GHz frequency, but the larger resistivity of the ferrite prepared in situ without any heating treatments has lower energy loss. In order to obtain materials with large permeability and low energy loss in the GHz range, the [CoFe-NiZn ferrite] composite granular thin films were investigated, where the advantage of higher saturation magnetization for the metallic alloy and the high resis- tivity as well as high saturation magnetization for the ferrite results in a good GHz magnetic performance.
基金Projects(50771092,21073162) supported by the National Natural Science Foundation of ChinaProject(2005DKA10400-Z15) supported by the Ministry of Science and Technology of China
文摘CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-ray spectroscope(EDS) and X-ray diffractometer(XRD).The soft magnetic properties were investigated through vibrating sample magnetometer(VSM).The corrosion resistance was investigated through Tafel polarization and electrochemical impedance spectroscopic(EIS).The results show that all the electrodeposited CoNiFe,CoNiFeB and CoNiFeP films are mixtures of crystalline and amorphous phases,and high amount of boron/phosphorus-containing additives favors the formation of amorphous state.Nanostructure is obtained in CoNiFe and CoNiFeB films.The inclusion of boron causes the film more dense and also increases its corrosion resistance.Meanwhile,the inclusion of boron lowers its coercivity(Hc) from 851.48 A/m to 604.79 A/m,but the saturation magnetic flux density(Bs) is almost unchanged.However,the addition of phosphorus greatly increases the film particle size and decreases its corrosion stability.The coercivity(Hc) of CoNiFeP film is also highly increased to 12485.79 A/m,and its saturation magnetic flux density(Bs) is greatly decreased to 1.25 T.
基金supported by the National Natural Science Foundation of China (No.10574085)the Scientific Research of Yuncheng University,China (No.2009007)
文摘Ag/[BN/CoPt]5/Ag and [BN/Ag/CoPt]5/Ag thin films were deposited on glass substrates by magnetron sputtering and then annealed in vac- uum at 600 ℃ for 30 min. The structures and magnetic properties of CoPt/BN multilayer films were investigated as a function of Ag layer thickness. It was found that the face-centered tetragonal (fct) (001) texture of CoPt was improved greatly by introducing the Ag toplayer or sublayer together with an Ag underlayer. Good (001)-oriented growth, low intergrain interactions as well as high perpendicular anisotropy can be obtained in the Ag(3 nm)/[BN(2.5 nm)/CoPt(3 nm)]5/Ag(7 nm) and [BN(2.5 nm)/Ag(2 nm)/CoPt(3 nm)]5/Ag(10 nm) films, which become potential candidates for ultrahigh density magnetic recording media.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2012205038)
文摘A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and magnetic properties. The optical properties of the films can be effectively tuned by adjusting the thickness of the PAA template. The deposition of Co nanowires greatly increases the color saturation of the PAA films. The theoretical results of the changes in structural color according to the Bragg-Snell formula are consistent with the experimental results. PAA@Co films can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting applications.
基金National Science Council of Taiwan-China! grant number NSC8&0208-M007-083PC.
文摘The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic properties and phases under different sandwich and annealing conditions were studied. In MIM structure, the incorporation of the interlayer iron does increase the magnetization measured under 8 kOe (M_8K), but reduce coercivity (H_c). The H_c of asdeposited films decreases from 354 Oe to 74 Oe; while M_8K increases from 254 to 392 emu/cc. By annealing in air, the whole MIM tri-layer film becomes γ-F_e2O_3, H_c is about 550 O_e and M_8K is around 250 emu/cc. The coercivity mechanism of as-deposited and annealed MIM trilayer films belongs to domain-wall pinning type. δM plots show that when the interlayer Fe thickness is 12 um, the Fe and Fe_3O_4 layers are decoupled in the as-deposited and annealed states; while it is coupled in the as deposited state when the Fe thickness increases to 23 um. Vacuum annealing of the MIM films leads to increase in both coercivity and magnetization, and to enhance the exchange coupling between layers.
基金Supported by the Natural Science Foundation of Tianjin,China(08JCZDJC17400)
文摘Ni-Fe/Cu/Co/Cu multilayered nanowire arrays were electrodeposited into anodic aluminum oxide template by using dual-bath method at room temperature. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology and structure of the multilayered nanowire arrays. Vibrating sample magnetometer and physical property measurement system were used to measure their magnetic and giant magnetoresistance (GMR) properties. The effect of sub-layer thickness on the magnetic and GMR properties was investigated. The results indicate that magnetic properties of electmdeposited nanowires are not affected obviously by Cu layer thickness, while magnetic layers (Ni-Fe and Co layers) have significant influence. In addition, GMR ratio presents an oscillatory behavior as Cu layer thickness changes. The magnetic and GMR properties of the multilayered nanowire arrays are optimum at room temperature for the material structure of Ni-Fe (25 nm)/Cu (15 nm)/Co (25 nm)/Cu (15 nm) with 30 deposition cycles.