Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external ...Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external magnetic field,these materials exhibit varying magnetorheological and viscoelastic properties,including shear stress,yield stress,dynamic moduli,and damping.In this work,a new type of MRE,termed self-healing MREs(SH-MREs),has been developed by adding a novel self-healing agent into existing MREs.The dynamic modulus and loss factor of SH-MREs with different compositions have been characterized under various conditions of frequency,temperature,and strain.The results show that as the strain value increases,the loss factor also increases.Moreover,the loss factor initially increases and then decreases with increasing magnetic field strength.Although higher concentrations of ferromagnetic particles increase the loss factor,they enhance the operational range due to their better responsiveness to magnetic fields.SH-MREs demonstrate improved damping capabilities,attributed to the formation of coordination bonds between ferromagnetic particles and the self-healing agent.The stable structure increases the viscosity of MREs.The results of the regression model suggest a direct proportionality between sensitivity to the magnetic field and the ferromagnetic particle concentration.展开更多
Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the in...Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better.展开更多
Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the expe...Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the experimental data show that the dynamic characteristics of MR mount such as dynamic stiffness and loss angles vary distinctly as the excitation frequency, and MR fluids as one type of attracting controllable fluids are fit for hydraulic engine mounts. The author advises to work out potentialities of MR fluids, the semi control or active control MR fluids filled hydraulic engine mount must be developed.展开更多
Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for...Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for reducing power consumption and generating large yield stress. Finite element analysis was performed to analyze magnetic field distribution, based on which a prototype MR cell was fabricated and tested to investigate the performance of various combinations of individual input currents. A good correlation was identified between experimental results and FEA predications. The results show that the power consumption can be reduced to 42.4%, maintaining large transmission torque, by distributing the total current(2 A) to three individual magnetic coils. In addition, optimal results of four input currents considering a multi-objective function are obtained by changing the weighting factor λ. The advantage of this design, such as lower power consumption and more control flexibility, makes it more competitive in engineering applications that require large energy consumption.展开更多
Fatigue properties of magnetorheological elastomer (MRE) samples were investigated based on cis-polybutadiene rubber by using a fatigue test machine. Three MRE samples with iron particles mass fraction of 60%, 70%, ...Fatigue properties of magnetorheological elastomer (MRE) samples were investigated based on cis-polybutadiene rubber by using a fatigue test machine. Three MRE samples with iron particles mass fraction of 60%, 70%, and 80% were fabricated, and their properties dependence of three strain amplitudes (50%, 75%, and 100%) were measured. The absolute magnetorheological (MR) effect, storage modulus, and loss modulus of MRE samples after fatigue were evaluated by a modified dynamic mechanical analyzer. The results revealed that MR effect, storage modulus, and loss modulus of MREs containing 80% iron particles depended strongly on the strain amplitudes and the number of cycles, while storage mod-ulus and loss modulus of MREs containing 70% iron particles also depended on the strain amplitudes and the number of cycles but not as strongly as sample which contains 80% iron particles, but the properties of MREs containing 60% iron particles after cyclic deforma-tion were almost independent of the fatigued conditions. In order to investigate the fatigue mechanism of MREs, the sample was carried out with a quasi-static tensile testing and its surface morphology during testing was observed in situ by scanning electron microscopy.展开更多
The methodology for adaptive control of helicopter ground resonance with magnetorheological (MR) damper is presented. The adaptive inverse control method is used to control the output damping force of MR damper and ...The methodology for adaptive control of helicopter ground resonance with magnetorheological (MR) damper is presented. The adaptive inverse control method is used to control the output damping force of MR damper and the range of the damping force is given. Through the adaptive inverse control, the damping force of MR damper is fit to a desired damping force. With the background of applying MR damper to control of helicopter ground resonance, a model of loss force and an adaptive arithmetic for stabilization of the coupled rotor/fuselage system are presented. The simulation shows that the controller presented in this paper can stabilize the rotor/fuselage coupling system quickly and control the helicopter ground resonance effectively.展开更多
Magnetorheological (MR) fluid is a type of a smart material that can control its mechanical properties under a magnetic field. Iron particles in MR fluid form chain structures in the direction of an applied magnetic...Magnetorheological (MR) fluid is a type of a smart material that can control its mechanical properties under a magnetic field. Iron particles in MR fluid form chain structures in the direction of an applied magnetic field, which is known as MR effect, resulting in variation of stiffness, shear modulus, damping and tribological characteristics of MR fluid. As MR effect depends on the density of particles in the fluid or the strength of a magnetic field, the experiments are conducted to evaluate the friction property under reciprocating motion by changing the types of MR fluid and the strength of a magnetic field. The material of aluminum, brass, and steel are chosen for specimen as they are the most common material in mechanical applications. The surfaces of specimen are also observed by optical microscope before and after experiments to compare the surfaces with test conditions. The comparing results show that the friction coefficient increases as the strength of a magnetic field increases in regardless of types of MR fluid or the material. Also the density of particle in MR fluid affects the friction characteristic. The results from this research can be used to improve the performance of mechanical applications using MR fluid.展开更多
This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological(MR)damper.This features a hysteretic behavior that is presently captured through the nonline...This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological(MR)damper.This features a hysteretic behavior that is presently captured through the nonlinear Bouc-Wen model.The control objective is to regulate well the heave and the pitch motions of the chassis despite the road irregularities.The difficulty of the control problem lies in the nonlinearity of the system model,the uncertainty of some of its parameters,and the inaccessibility to measurements of the hysteresis internal state variables.Using Lyapunov control design tools,we design two observers to get online estimates of the hysteresis internal states and a stabilizing adaptive state-feedback regulator.The whole adaptive controller is formally shown to meet the desired control objectives.This theoretical result is confirmed by several simulations demonstrating the supremacy of the latter compared to the skyhook control and passive suspension.展开更多
A novel magnetorheological finishing(MRF)process using a small ball-end permanent-magnet polishing head is proposed,and a four-axes linkage dedicated MRF machine tool is fabricated to achieve the nanofinishing of an i...A novel magnetorheological finishing(MRF)process using a small ball-end permanent-magnet polishing head is proposed,and a four-axes linkage dedicated MRF machine tool is fabricated to achieve the nanofinishing of an irregularψ-shaped small-bore complex component with concave surfaces of a curvature radius less than3 mm.The processing method of the complex component is introduced.Magnetostatic simulation during the entire finishing path is carried out to analyze the material removal characteristics.A typicalψ-shaped small-bore complex component is polished on the developed device,and a fine surface quality is obtained with surface roughness Raof 0.0107μm and surface accuracy of the finished spherical surfaces of 0.3320μm(PV).These findings indicate that the proposed MRF process can perform the nanofinishing of a kind of small-bore complex component with small-curvature-radius concave surfaces.展开更多
A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single a...A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.展开更多
The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dyn...The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dynamical mechanical properties were characterized by using a dynamic mechanic analyzer. In particular, both the MR effect and its durability were investigated. The experimental results showed that RV samples have large magnetoinduced modulus, large zero-field modulus, and good durability property of MR effect. To explain these results, cubic deformation and plasticizer migration were analyzed. Large magneto-induced modulus of RV sample results from cubic deformation during vulcanization process. And the plasticizer migration results in better durability of MR effect.展开更多
Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear...Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear combined and valve typed MR damper is designed and manufactured, and the dynamic properties under sinusoidal excitations are experimentally studied. The experiment results show that the maximum damping force of the MR damper at the full magnetic intensity reaches about 20 kN while the maximum power required is less than 50 W, which predicts that the MR damper will be a powerful measurement for semi active vibration control of civil infrastructures.展开更多
Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of tw...Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of two annular fluid flowchannels,four radial fluid flow channels and three centric pipe fluid flowchannels. The working principle of the multiple radial MR valve was introduced in detail,and the structure optimization design was carried out using ANSYS software to obtain the optimal structure parameters. Moreover,the optimized MR valve was compared with preoptimized MR valve in terms of their magnetic flux density of radial fluid resistance gap and performance of pressure drop. The experimental test rig was set up to investigate the performance of pressure drop of the proposed MR valve under different currents applied and different loading cases. The results showthat the pressure drop between the inlet and outlet port could reach 5. 77 MPa at the applied current of 0. 8 A. Furthermore,the experimental results also indicate that the loading cases had no effect on the performance of pressure drop.展开更多
A sandwich beam specimen was fabricated by treating with MR elastomers between two thin aluminum face-plates.Experiment was carried out to investigate the vibration responses of the sandwich beam with respect to the i...A sandwich beam specimen was fabricated by treating with MR elastomers between two thin aluminum face-plates.Experiment was carried out to investigate the vibration responses of the sandwich beam with respect to the intensity of the magnetic field and excitation frequencies.The results show that the sandwich beams with MR elastomers cores have the capabilities of shifting natural frequencies and the vibration amplitudes decrease with the variation of the intensity of external magnetic field.展开更多
The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid(MRF)damper.A dynamic model of the MRF damper-rotor system was built ...The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid(MRF)damper.A dynamic model of the MRF damper-rotor system was built and simulated in Matlab/Simulink to analyze the rotor vibration characteristics and the vibration reduction effect of the MRF damper.Based on the numerical simulation analysis,an optimizing control strategy using pattern search method was proposed and designed.The control system was constructed on a test rotor bench and experiment validations on the effectiveness of the proposed control strategy were conducted.Experimental results show that rotor vibration caused by unbalance can be well controlled whether in resonance region(70%)or in non-resonance region(30%).An irregular vibration amplitude jump can be suppressed with the optimization strategy.Furthermore,it is found that the rapidity of transient response and efficiency of optimizing technique depend on the pattern search step.The presented strategies and control system can be extended to multi-span(more than two or three spans)rotor system.It provides a powerful technical support for the extension and application in target and control for shafting vibration.展开更多
The damping property of magnetorheological elastomers(MREs) is characterized by a modified dynamic mechanical-magnetic coupled analyzer.The influence of external magnetic flux density,damping of matrix,content of iron...The damping property of magnetorheological elastomers(MREs) is characterized by a modified dynamic mechanical-magnetic coupled analyzer.The influence of external magnetic flux density,damping of matrix,content of iron particles,dynamic strain and driving frequency on the MREs' damping was investigated experimentally.The results indicate that the MREs' damping property depends on the interfacial slip between the inner particles and the matrix.Different from the general composite materials,the interfacial slip in MRE is affected by the external applied magnetic field.展开更多
Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a n...Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a new style isolator system was created. This isolator system consists of a steel coil spring component and a magnetorheological (MR) damper component working in parallel. Experiments on this isolator system were carried out, including tests of vibration reduction and shock resistance. The vibration load frequencies were set from 1-15 Hz, and force amplitudes from 2.94-11.76kN. The maximum shock input acceleration was 20 g, and impulse width was lores. Both the vibration and shock loads were applied using MTS Systems Corporation's hydraulic actuators. The experimental results indicated that the isolator system performs well on system vibration response, with resonance humps of the vibration response obviously reduced after using the MR damper. For the shock experiment, the attenuation of shock response was much faster with increased MR damping. The MR damper's effect on shock moments was very different from its performance in vibration mode. The correlation between MR force and control current was not as evident as it was during vibration loads.展开更多
Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In thi...Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.展开更多
A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A seri...A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A series of tests were performed at the loads of 20-100 N and rotating speeds of 127-425 r/min for 2 h. The friction coefficient and wear rate were monitored by the wear apparatus, while the microstructures of the worn surfaces were observed by scanning electron microscope (SEM). In addition, the chemical composition of worn surfaces was analyzed by energy dispersive X-ray spectroscopy (EDS). Test results show different friction and wear performance of the MR fluid with and without magnetic field. At the same time, the effects of various normal loads and rotating speeds on the tribological behavior were investigated. Through the investigation of the morphologies of the wom surfaces under the magnetic field, it is found that the MR particles are clearly evident on the wom surface and the plastic flow of ridges causes the lateral extrusion. This directly indicates that abrasive wear is the predominant wear mechanism observed with MR fluid.展开更多
In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for M...In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for MRF was designed. Moreover, relevant experiments were carded out and the relationship between squeezing pressure and braking torque was proposed. Experiments results showed that the yield stress of MRF improved linearly with the increasing of external squeezing pressure and the braking torque increased three times when external squeezing pressure achieved 2 MPa.展开更多
基金the National Natural Science Foundation of China(No.52003142).
文摘Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external magnetic field,these materials exhibit varying magnetorheological and viscoelastic properties,including shear stress,yield stress,dynamic moduli,and damping.In this work,a new type of MRE,termed self-healing MREs(SH-MREs),has been developed by adding a novel self-healing agent into existing MREs.The dynamic modulus and loss factor of SH-MREs with different compositions have been characterized under various conditions of frequency,temperature,and strain.The results show that as the strain value increases,the loss factor also increases.Moreover,the loss factor initially increases and then decreases with increasing magnetic field strength.Although higher concentrations of ferromagnetic particles increase the loss factor,they enhance the operational range due to their better responsiveness to magnetic fields.SH-MREs demonstrate improved damping capabilities,attributed to the formation of coordination bonds between ferromagnetic particles and the self-healing agent.The stable structure increases the viscosity of MREs.The results of the regression model suggest a direct proportionality between sensitivity to the magnetic field and the ferromagnetic particle concentration.
文摘Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better.
文摘Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the experimental data show that the dynamic characteristics of MR mount such as dynamic stiffness and loss angles vary distinctly as the excitation frequency, and MR fluids as one type of attracting controllable fluids are fit for hydraulic engine mounts. The author advises to work out potentialities of MR fluids, the semi control or active control MR fluids filled hydraulic engine mount must be developed.
基金Projects(51175265,51305207)supported by the National Natural Science Foundation of China
文摘Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for reducing power consumption and generating large yield stress. Finite element analysis was performed to analyze magnetic field distribution, based on which a prototype MR cell was fabricated and tested to investigate the performance of various combinations of individual input currents. A good correlation was identified between experimental results and FEA predications. The results show that the power consumption can be reduced to 42.4%, maintaining large transmission torque, by distributing the total current(2 A) to three individual magnetic coils. In addition, optimal results of four input currents considering a multi-objective function are obtained by changing the weighting factor λ. The advantage of this design, such as lower power consumption and more control flexibility, makes it more competitive in engineering applications that require large energy consumption.
文摘Fatigue properties of magnetorheological elastomer (MRE) samples were investigated based on cis-polybutadiene rubber by using a fatigue test machine. Three MRE samples with iron particles mass fraction of 60%, 70%, and 80% were fabricated, and their properties dependence of three strain amplitudes (50%, 75%, and 100%) were measured. The absolute magnetorheological (MR) effect, storage modulus, and loss modulus of MRE samples after fatigue were evaluated by a modified dynamic mechanical analyzer. The results revealed that MR effect, storage modulus, and loss modulus of MREs containing 80% iron particles depended strongly on the strain amplitudes and the number of cycles, while storage mod-ulus and loss modulus of MREs containing 70% iron particles also depended on the strain amplitudes and the number of cycles but not as strongly as sample which contains 80% iron particles, but the properties of MREs containing 60% iron particles after cyclic deforma-tion were almost independent of the fatigued conditions. In order to investigate the fatigue mechanism of MREs, the sample was carried out with a quasi-static tensile testing and its surface morphology during testing was observed in situ by scanning electron microscopy.
基金Foundation item: Aeronautical Science Foundation of China (04A52005)
文摘The methodology for adaptive control of helicopter ground resonance with magnetorheological (MR) damper is presented. The adaptive inverse control method is used to control the output damping force of MR damper and the range of the damping force is given. Through the adaptive inverse control, the damping force of MR damper is fit to a desired damping force. With the background of applying MR damper to control of helicopter ground resonance, a model of loss force and an adaptive arithmetic for stabilization of the coupled rotor/fuselage system are presented. The simulation shows that the controller presented in this paper can stabilize the rotor/fuselage coupling system quickly and control the helicopter ground resonance effectively.
基金Supported by Basic Science Research Program of National Research Foundation of Korea,Ministry of Education,Science and Technology of the Korean(Grant No.NRF-2015R1D1A1A09060901)Ministry of Science,ICT and Future Planning,Korea,under Convergence Information Technology Research Center(Grant No.IITP-2015-H8601-15-1003) supervised by Institute for Information&Communications Technology PromotionAdvanced Technology Center R&D Program funded by the Ministry of Trade,Industry&Energy of Korea(Grant No.10048876)
文摘Magnetorheological (MR) fluid is a type of a smart material that can control its mechanical properties under a magnetic field. Iron particles in MR fluid form chain structures in the direction of an applied magnetic field, which is known as MR effect, resulting in variation of stiffness, shear modulus, damping and tribological characteristics of MR fluid. As MR effect depends on the density of particles in the fluid or the strength of a magnetic field, the experiments are conducted to evaluate the friction property under reciprocating motion by changing the types of MR fluid and the strength of a magnetic field. The material of aluminum, brass, and steel are chosen for specimen as they are the most common material in mechanical applications. The surfaces of specimen are also observed by optical microscope before and after experiments to compare the surfaces with test conditions. The comparing results show that the friction coefficient increases as the strength of a magnetic field increases in regardless of types of MR fluid or the material. Also the density of particle in MR fluid affects the friction characteristic. The results from this research can be used to improve the performance of mechanical applications using MR fluid.
文摘This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological(MR)damper.This features a hysteretic behavior that is presently captured through the nonlinear Bouc-Wen model.The control objective is to regulate well the heave and the pitch motions of the chassis despite the road irregularities.The difficulty of the control problem lies in the nonlinearity of the system model,the uncertainty of some of its parameters,and the inaccessibility to measurements of the hysteresis internal state variables.Using Lyapunov control design tools,we design two observers to get online estimates of the hysteresis internal states and a stabilizing adaptive state-feedback regulator.The whole adaptive controller is formally shown to meet the desired control objectives.This theoretical result is confirmed by several simulations demonstrating the supremacy of the latter compared to the skyhook control and passive suspension.
基金supported by the National Key Research and Development Program of China [grant number 2018YFB1107600]
文摘A novel magnetorheological finishing(MRF)process using a small ball-end permanent-magnet polishing head is proposed,and a four-axes linkage dedicated MRF machine tool is fabricated to achieve the nanofinishing of an irregularψ-shaped small-bore complex component with concave surfaces of a curvature radius less than3 mm.The processing method of the complex component is introduced.Magnetostatic simulation during the entire finishing path is carried out to analyze the material removal characteristics.A typicalψ-shaped small-bore complex component is polished on the developed device,and a fine surface quality is obtained with surface roughness Raof 0.0107μm and surface accuracy of the finished spherical surfaces of 0.3320μm(PV).These findings indicate that the proposed MRF process can perform the nanofinishing of a kind of small-bore complex component with small-curvature-radius concave surfaces.
基金Supported by the National Natural Science Foundation of China(51765016,51475165,11462004)the Jiangxi Provincial Foundation for Leaders of Academic and Disciplines in Science(20162BCB22019)5511 Science and Technology Innovation Talent Project of Jiangxi Province(20165BCB18011)
文摘A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.
基金The work was supported by the National Natural Science Foundation of China (No.10672154).
文摘The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dynamical mechanical properties were characterized by using a dynamic mechanic analyzer. In particular, both the MR effect and its durability were investigated. The experimental results showed that RV samples have large magnetoinduced modulus, large zero-field modulus, and good durability property of MR effect. To explain these results, cubic deformation and plasticizer migration were analyzed. Large magneto-induced modulus of RV sample results from cubic deformation during vulcanization process. And the plasticizer migration results in better durability of MR effect.
文摘Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear combined and valve typed MR damper is designed and manufactured, and the dynamic properties under sinusoidal excitations are experimentally studied. The experiment results show that the maximum damping force of the MR damper at the full magnetic intensity reaches about 20 kN while the maximum power required is less than 50 W, which predicts that the MR damper will be a powerful measurement for semi active vibration control of civil infrastructures.
基金Supported by the National Natural Science Foundation of China(51475165,11462004)the Jiangxi Provincial Foundation for Leaders of Academic and Disciplines in Science(20162BCB22019)5511 Science and Technology Innovation Talent Project of Jiangxi Province(20165BCB18011)
文摘Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of two annular fluid flowchannels,four radial fluid flow channels and three centric pipe fluid flowchannels. The working principle of the multiple radial MR valve was introduced in detail,and the structure optimization design was carried out using ANSYS software to obtain the optimal structure parameters. Moreover,the optimized MR valve was compared with preoptimized MR valve in terms of their magnetic flux density of radial fluid resistance gap and performance of pressure drop. The experimental test rig was set up to investigate the performance of pressure drop of the proposed MR valve under different currents applied and different loading cases. The results showthat the pressure drop between the inlet and outlet port could reach 5. 77 MPa at the applied current of 0. 8 A. Furthermore,the experimental results also indicate that the loading cases had no effect on the performance of pressure drop.
基金Project(10602033) supported by the National Natural Science Foundation of ChinaProject(07B012) supported by Scientific Research Fund of Education Department of Hunan ProvinceProject(VSN-2007-01) supported the Research Fund of State Key Laboratory of Mechanical System and Vibration
文摘A sandwich beam specimen was fabricated by treating with MR elastomers between two thin aluminum face-plates.Experiment was carried out to investigate the vibration responses of the sandwich beam with respect to the intensity of the magnetic field and excitation frequencies.The results show that the sandwich beams with MR elastomers cores have the capabilities of shifting natural frequencies and the vibration amplitudes decrease with the variation of the intensity of external magnetic field.
基金Supported by the National Program on Key Basic Research Program(″973″Program)(2012CB026000)the Ph.D.Programs Foundation of Ministry of Education of China(20110010110009)
文摘The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid(MRF)damper.A dynamic model of the MRF damper-rotor system was built and simulated in Matlab/Simulink to analyze the rotor vibration characteristics and the vibration reduction effect of the MRF damper.Based on the numerical simulation analysis,an optimizing control strategy using pattern search method was proposed and designed.The control system was constructed on a test rotor bench and experiment validations on the effectiveness of the proposed control strategy were conducted.Experimental results show that rotor vibration caused by unbalance can be well controlled whether in resonance region(70%)or in non-resonance region(30%).An irregular vibration amplitude jump can be suppressed with the optimization strategy.Furthermore,it is found that the rapidity of transient response and efficiency of optimizing technique depend on the pattern search step.The presented strategies and control system can be extended to multi-span(more than two or three spans)rotor system.It provides a powerful technical support for the extension and application in target and control for shafting vibration.
基金Project(10672154) supported by the National Natural Science Foundation of ChinaProject(20050358010) supported by the SRFDP of China
文摘The damping property of magnetorheological elastomers(MREs) is characterized by a modified dynamic mechanical-magnetic coupled analyzer.The influence of external magnetic flux density,damping of matrix,content of iron particles,dynamic strain and driving frequency on the MREs' damping was investigated experimentally.The results indicate that the MREs' damping property depends on the interfacial slip between the inner particles and the matrix.Different from the general composite materials,the interfacial slip in MRE is affected by the external applied magnetic field.
文摘Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a new style isolator system was created. This isolator system consists of a steel coil spring component and a magnetorheological (MR) damper component working in parallel. Experiments on this isolator system were carried out, including tests of vibration reduction and shock resistance. The vibration load frequencies were set from 1-15 Hz, and force amplitudes from 2.94-11.76kN. The maximum shock input acceleration was 20 g, and impulse width was lores. Both the vibration and shock loads were applied using MTS Systems Corporation's hydraulic actuators. The experimental results indicated that the isolator system performs well on system vibration response, with resonance humps of the vibration response obviously reduced after using the MR damper. For the shock experiment, the attenuation of shock response was much faster with increased MR damping. The MR damper's effect on shock moments was very different from its performance in vibration mode. The correlation between MR force and control current was not as evident as it was during vibration loads.
基金Project(cstc2019jcyj-msxm X0005)supported by General Program of Chongqing Natural Science Foundation,ChinaProject(51905062)supported by the National Natural Science Foundation of China。
文摘Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.
基金Project (2010-0015090) supported by the National Research Foundation of Korea
文摘A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A series of tests were performed at the loads of 20-100 N and rotating speeds of 127-425 r/min for 2 h. The friction coefficient and wear rate were monitored by the wear apparatus, while the microstructures of the worn surfaces were observed by scanning electron microscope (SEM). In addition, the chemical composition of worn surfaces was analyzed by energy dispersive X-ray spectroscopy (EDS). Test results show different friction and wear performance of the MR fluid with and without magnetic field. At the same time, the effects of various normal loads and rotating speeds on the tribological behavior were investigated. Through the investigation of the morphologies of the wom surfaces under the magnetic field, it is found that the MR particles are clearly evident on the wom surface and the plastic flow of ridges causes the lateral extrusion. This directly indicates that abrasive wear is the predominant wear mechanism observed with MR fluid.
基金Funded by National Natural Science Foundation of China(No.51475454)National Natural Science Foundation of JiangsuProvince(No.BK20151144)+1 种基金Fundamental Research Funds forthe Central Universities(No.2014QNA38)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for MRF was designed. Moreover, relevant experiments were carded out and the relationship between squeezing pressure and braking torque was proposed. Experiments results showed that the yield stress of MRF improved linearly with the increasing of external squeezing pressure and the braking torque increased three times when external squeezing pressure achieved 2 MPa.