A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
In recent years, the data collecting and processing of magnetotelluric sounding (MT) have progressed greatly. How to improve the quality of field surveyed data and obtain the high quality parameters such as apparent...In recent years, the data collecting and processing of magnetotelluric sounding (MT) have progressed greatly. How to improve the quality of field surveyed data and obtain the high quality parameters such as apparent resistivity and phase is the most important link during the overall flow. It is closely related to the signal-to-noise ratio of magnetic sensors, the resolution of data collecting units and relevant processing methods as well. Produced by Germany Metronix Measurement Instruments and Electronics Ltd., the new type multi-channel geophysical measurement system GMS-06 was already adopted and used by domeslic units such as Institute of Geology and Geophysics of Chinese Academy of Sciences and Tongji University. Based on the brief introduction of GMS-06, this paper will give the comparisons and analyses of the synchronous surveyed MT data by GMS-06, MMS-03 MT system which was also produced by Metronix and V5-2000 MT system produced by Canada Phoenix Geophysics Ltd.. Then the preliminary processing and interpretation results of the long period MT data observed by GMS-06 in the area of Shanghai and Zhejiang are also discussed in the paper.展开更多
From China to Russia,Tan-Lu fault system stretches for thousands of kilometers,towards NE 30°.The authors have collected more than ten magnetotelluric profile that China and Russia have carried out,in the studied...From China to Russia,Tan-Lu fault system stretches for thousands of kilometers,towards NE 30°.The authors have collected more than ten magnetotelluric profile that China and Russia have carried out,in the studied area of the Tan-Lu fault's northern section,and have analyzed electrical characteristics of the relevant profiles.Deriving the following conclusions:(1)Jiamusi-Bureya plots,etc.,demonstrate the high resistance of Kernel;(2)Fold belt attributed to the land showed high and low resistance stitching,associated with not only terrane accretion,but also upper mantle upwelling;below the sedimentary basin,the resistivity of the upper mantle is lower and closer to the surface comparing with the adjacent area(100-150);(3)In the system of Tan-Lu fracture,Yishu and Dunmi fracture,etc.are expressed as vertical low-resistivity zone;(4)There may exist subducted old-fashioned piece under Jiamusi and Bureya plots.展开更多
This paper deals with the results of the MT observations in the region of Zhongshan Station,Larsemann Hills area, East Antarctica and points out that the lithosphere thickness of the Larsemann Hills is 140 km and the ...This paper deals with the results of the MT observations in the region of Zhongshan Station,Larsemann Hills area, East Antarctica and points out that the lithosphere thickness of the Larsemann Hills is 140 km and the crustal high conductivity layer is situated in 22 km.展开更多
Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China,the orogenic process and its mechanism remain a matter of dispute.Previous geodynamic studies have mostly focused on...Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China,the orogenic process and its mechanism remain a matter of dispute.Previous geodynamic studies have mostly focused on collisional orogeny,which is commonly invoked to explain the Jiangnan Orogen.However,it is difficult for such hypotheses to reconcile all the geological and geophysical data,especially the absence of ultrahigh-pressure metamorphic rocks.Based on the magnetotelluric data,we present a group of resistivity models produced through the combination of two-dimensional and three-dimensional inversions,revealing the geo-electrical structures of Jiangnan and a typical collisional orogen.In our models,the resistive crust is separated into three parts by a prominent conductive layer with opposite dipping directions on both sides.A special thrust-nappe system,which is different from that developed in a typical collisional process,is revealed in the Jiangnan Orogen.This structure suggests a process different from the simple collisional orogeny.To interpret our observations,an'intra-continental orogeny'is proposed to address the development of the Jiangnan Orogen in the Mesozoic.Furthermore,this'reworked'process may contain at least two stages caused by the decoupling of the lithosphere,which is revealed by an extra conductive layer beneath Jiangnan.展开更多
The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northwar...The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northward, extends downward up to the depth of about 55 km and indicates the exposure of the possible real position of the Yarlung Zangbo suture. There are three sets of electrical gradient and distorted zones reflecting the structure of faults in the high conductivity region. These three fault belts, which dip northward and gradually converge downward to the main fault belt, and a series of south dipping faults in the north side form the exhaled structural characteristics of the Yarlung Zangbo suture. There is a close relationship between the large high conductivity body and the underground thermal state.展开更多
As part of“The Earth Summit Mission-2022”during the second Tibetan Plateau Scientific Expedition and Research(STEP)in April and May 2022,we conducted the ozone sounding experiment(an ozonesonde mated to a radiosonde...As part of“The Earth Summit Mission-2022”during the second Tibetan Plateau Scientific Expedition and Research(STEP)in April and May 2022,we conducted the ozone sounding experiment(an ozonesonde mated to a radiosonde)at Mt.Qomolangma Base Camp(MQBC;86.85°E,28.14°N;5200 m),a location at an extremely high altitude.A total of ten sounding profiles were obtained between April 30 and May 06,2022,of which seven profiles were above35 km in altitude,with a maximum detection altitude up to 39.0 km.This study presents the temporal variation and vertical distributions of atmospheric temperature,humidity,and ozone during the MQBC campaign.The averaged ozone concentration was high(68.3 ppbv)at the surface and then increased smoothly until peaking(~110 ppbv)in the middle troposphere(approximately 10 km),and afterward,the ozone concentration increased rapidly from the upper troposphere to a maximum of~10 ppmv at~30 km.The enhanced ozone concentration in the middle troposphere was associated with the blocking high pressure,and transport from the southern flank of the Himalayas occurred during the campaign period.The average total ozone column was 291.9±21.4 DU for the seven profiles exceeding 35km in altitude.The ozonesonde measurements were also compared with the vertical ozone profiles retrieved from the space-borne ozone products from the Microwave Limb Sounder(MLS)onboard the Aura satellite and the Atmospheric Infrared Sounder(AIRS)onboard the Aqua satellite.展开更多
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT...To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT signal affected by strong interference.First,the approximate entropy,fuzzy entropy,sample entropy,and Lempel-Ziv(LZ)complexity are extracted from the magnetotelluric data.Then,four robust parameters are used as the inputs to the support vector machine(SVM)to train the sample library and build a model based on the different complexity of signals.Based on this model,we can only consider time series with strong interference when using the complementary ensemble empirical mode decomposition(CEEMD)and wavelet threshold(WT)for noise suppression.Simulation results suggest that the SVM based on the robust parameters can distinguish the time periods with strong interference well before noise suppression.Compared with the CEEMD WT,the proposed SVM-CEEMDWT method retains more low-frequency low-variability information,and the apparent resistivity curve is smoother and more continuous.Moreover,the results better reflect the deep electrical structure in the field.展开更多
Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)h...Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)has covered whole south China.展开更多
The Duobaoshan mine area in Heilongjiang is located in the northeast section of Xingmeng orogenic belt and is in the west side of Hegang Mountain-Heihe fault zone. There exist many deposits in this area,and its metall...The Duobaoshan mine area in Heilongjiang is located in the northeast section of Xingmeng orogenic belt and is in the west side of Hegang Mountain-Heihe fault zone. There exist many deposits in this area,and its metallogenic conditions are superior,which has been one of the hotspots in geological prospecting and metallogenic research in Northeast China. On the basis of previous studies,the authors used the EH-4 electromagnetic imaging system to carry out the data acquisition of three survey lines in Woduhe Village,Duobaoshan Town,Nenjiang County. Through the analysis of apparent resistivity section under TE and TM polarization modes,integrating regional geological data,it is concluded that:(1) the electrical characteristics of the metal ore in this area show a relatively low resistance,and according to its resistivity difference with surrounding rocks,the geometrical structures and apparent resistivity parameters of the low resistivity bodies in the lower section of the survey line are defined,and the electrical anomalies can be identified;(2)faults F1 and F2 may have a good metallogenic environment,so they are recommended for further exploration;(3) low resistance metal ore bodies have good correlation with local small structures or faults,which may play an iconic role for the delineation of key target areas;(4) in the process of using apparent resistivity to define the geometric structures of ore bodies underground,comprehensive analysis integrating the advantages of TE and TM models should be carry out to achieve more reliable inversion results.展开更多
Two superwide bands of frequency magnetotelluric (MT) profiles (Yadong-Xuegula, Jilong-Cuoqin) across the Yaluzangbu suture were deployed along the west-east direction, for the research into the electrical conductivit...Two superwide bands of frequency magnetotelluric (MT) profiles (Yadong-Xuegula, Jilong-Cuoqin) across the Yaluzangbu suture were deployed along the west-east direction, for the research into the electrical conductivity structure in the shallow and deep crust along the west-east and north-south directions in the southern part of Tibet plateau. The main characters of the electrical conductivity structure in this region are: (1) large-scale high resistive bodies exist near the Yaluzangbu suture surface, which extends to the maximum depth of more than 30 km. They are the reflection of the Gangdise granite; (2) small-scale conductive bodies exist in the southern part of the Yaluzangbu suture, and large-scale ones under the suture and in the northern part; (3) conductive bodies widely spread in the crust along the profiles. They are discontinuous, mainly decline to the north and become larger in scale, steeper near the suture, deeper gradually from south to north; (4) under the Yaluzangbu suture, the conductive bodies become larger in scale, more conductive gradually from west to east. These important electrical characters are caused possibly by the India plate subduction to the north. The variation in characters of the large-scale conductive bodies from west to east may be the proof that the plate collision might cause substantial movement along the west-east direction.展开更多
The development of Tongchuan City,Shaanxi Province,located in the northwestern region of China,is restricted by water resources.The direct current resistivity and induced polarization sounding methods are typically ap...The development of Tongchuan City,Shaanxi Province,located in the northwestern region of China,is restricted by water resources.The direct current resistivity and induced polarization sounding methods are typically applied in finding urban groundwater.These methods,however,are not effective due to their complicated topography and geological conditions.The application practice shows that the audio magnetotelluric(AMT)method has a large depth of exploration,high work effi ciency,and high lateral resolution.To investigate the distribution of groundwater resources,we deployed three audio-frequency magnetotelluric profiles in the city area.The impedance tensor information of AMT data is obtained using SSMT2000.AMT data dimension analysis reveals that the two-dimensional structural features of the observation area are obvious.The main structure of the observation area is about 45°northeast,as indicated by structural trend analysis.A shallow two-dimensional electrical profile of 1 km in Tongchuan City is obtained by two-dimensional nonlinear conjugate gradient inversion.Finally,combined with regional geological information,the geological structure characteristics reflected by the electrical profile were obtained along with the detailed characteristics of water-rich structures in the area.The infl uence of the structure on the groundwater distribution was analyzed,and the water-rich areas were identifi ed.This work contributes to the prospective development of Tongchuan City.展开更多
【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提...【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提出了基于时间序列双向循环插补模型(Bidirectional recurrent imputation for time series,BRITS)的大地电磁脉冲类噪声处理方法。首先,将噪声干扰段删除,此时大地电磁时间序列可视为待插补的缺失序列,而后利用该缺失序列构建训练集,对BRITS模型进行插补训练,训练完成后对缺失序列进行插补,即可得到去噪结果。通过仿真及实测含噪声数据处理,并与经验模态分解(Empirical mode decomposition,EMD)阈值方法进行了对比。【结果和结论】结果表明:BRITS方法对仿真噪声数据处理后与原始数据的归一化互相关系数可达0.999以上,信噪比可达29 dB以上,EMD阈值方法处理前后相关系数为0.778,信噪比为3.09 dB;在实测数据处理中,BRITS方法有效恢复了噪声干扰数据,相比EMD阈值方法,其阻抗奈奎斯特图更接近天然大地电磁信号特征。通过不同训练样本试验得出:对4分量大地电磁数据而言,数据中至少需包含两道正常分量,单个含噪分量中噪声占比不大于20%,且噪声连续干扰长度不超过10个采样点,此时,BRITS方法去噪后数据的相关系数在0.96以上,可以保证一定的去噪精度。展开更多
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.
基金National Natural Science Foundation of China (40104005) and National High Technical Research and Development Project (2004AA615010).
文摘In recent years, the data collecting and processing of magnetotelluric sounding (MT) have progressed greatly. How to improve the quality of field surveyed data and obtain the high quality parameters such as apparent resistivity and phase is the most important link during the overall flow. It is closely related to the signal-to-noise ratio of magnetic sensors, the resolution of data collecting units and relevant processing methods as well. Produced by Germany Metronix Measurement Instruments and Electronics Ltd., the new type multi-channel geophysical measurement system GMS-06 was already adopted and used by domeslic units such as Institute of Geology and Geophysics of Chinese Academy of Sciences and Tongji University. Based on the brief introduction of GMS-06, this paper will give the comparisons and analyses of the synchronous surveyed MT data by GMS-06, MMS-03 MT system which was also produced by Metronix and V5-2000 MT system produced by Canada Phoenix Geophysics Ltd.. Then the preliminary processing and interpretation results of the long period MT data observed by GMS-06 in the area of Shanghai and Zhejiang are also discussed in the paper.
基金the Project 12-05-91158 of the National Natural Science Foundation of China(NSFC)the Russian Academy of Sciences"Deep structure,evolution of the sedimentogenesis and tectonics of Northeastern China and southeastern Far East Russia"
文摘From China to Russia,Tan-Lu fault system stretches for thousands of kilometers,towards NE 30°.The authors have collected more than ten magnetotelluric profile that China and Russia have carried out,in the studied area of the Tan-Lu fault's northern section,and have analyzed electrical characteristics of the relevant profiles.Deriving the following conclusions:(1)Jiamusi-Bureya plots,etc.,demonstrate the high resistance of Kernel;(2)Fold belt attributed to the land showed high and low resistance stitching,associated with not only terrane accretion,but also upper mantle upwelling;below the sedimentary basin,the resistivity of the upper mantle is lower and closer to the surface comparing with the adjacent area(100-150);(3)In the system of Tan-Lu fracture,Yishu and Dunmi fracture,etc.are expressed as vertical low-resistivity zone;(4)There may exist subducted old-fashioned piece under Jiamusi and Bureya plots.
文摘This paper deals with the results of the MT observations in the region of Zhongshan Station,Larsemann Hills area, East Antarctica and points out that the lithosphere thickness of the Larsemann Hills is 140 km and the crustal high conductivity layer is situated in 22 km.
基金funded by the Anhui Province Science Program(2018-g-1-4)the National Science Program(Nos.41630320,42174087)the National Key R&D Program of China(No.2016YFC0600201)。
文摘Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China,the orogenic process and its mechanism remain a matter of dispute.Previous geodynamic studies have mostly focused on collisional orogeny,which is commonly invoked to explain the Jiangnan Orogen.However,it is difficult for such hypotheses to reconcile all the geological and geophysical data,especially the absence of ultrahigh-pressure metamorphic rocks.Based on the magnetotelluric data,we present a group of resistivity models produced through the combination of two-dimensional and three-dimensional inversions,revealing the geo-electrical structures of Jiangnan and a typical collisional orogen.In our models,the resistive crust is separated into three parts by a prominent conductive layer with opposite dipping directions on both sides.A special thrust-nappe system,which is different from that developed in a typical collisional process,is revealed in the Jiangnan Orogen.This structure suggests a process different from the simple collisional orogeny.To interpret our observations,an'intra-continental orogeny'is proposed to address the development of the Jiangnan Orogen in the Mesozoic.Furthermore,this'reworked'process may contain at least two stages caused by the decoupling of the lithosphere,which is revealed by an extra conductive layer beneath Jiangnan.
基金The study is supported by National Natural Science Foundation of China
文摘The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northward, extends downward up to the depth of about 55 km and indicates the exposure of the possible real position of the Yarlung Zangbo suture. There are three sets of electrical gradient and distorted zones reflecting the structure of faults in the high conductivity region. These three fault belts, which dip northward and gradually converge downward to the main fault belt, and a series of south dipping faults in the north side form the exhaled structural characteristics of the Yarlung Zangbo suture. There is a close relationship between the large high conductivity body and the underground thermal state.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program (STEP,2019QZKK0606,2019QZKK0604)the National Natural Science Foundation of China (Grant No.41875183)。
文摘As part of“The Earth Summit Mission-2022”during the second Tibetan Plateau Scientific Expedition and Research(STEP)in April and May 2022,we conducted the ozone sounding experiment(an ozonesonde mated to a radiosonde)at Mt.Qomolangma Base Camp(MQBC;86.85°E,28.14°N;5200 m),a location at an extremely high altitude.A total of ten sounding profiles were obtained between April 30 and May 06,2022,of which seven profiles were above35 km in altitude,with a maximum detection altitude up to 39.0 km.This study presents the temporal variation and vertical distributions of atmospheric temperature,humidity,and ozone during the MQBC campaign.The averaged ozone concentration was high(68.3 ppbv)at the surface and then increased smoothly until peaking(~110 ppbv)in the middle troposphere(approximately 10 km),and afterward,the ozone concentration increased rapidly from the upper troposphere to a maximum of~10 ppmv at~30 km.The enhanced ozone concentration in the middle troposphere was associated with the blocking high pressure,and transport from the southern flank of the Himalayas occurred during the campaign period.The average total ozone column was 291.9±21.4 DU for the seven profiles exceeding 35km in altitude.The ozonesonde measurements were also compared with the vertical ozone profiles retrieved from the space-borne ozone products from the Microwave Limb Sounder(MLS)onboard the Aura satellite and the Atmospheric Infrared Sounder(AIRS)onboard the Aqua satellite.
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
基金funded by the National Key R&D Program of China(No.2018YFC0603202)the National Natural Science Foundation of China(No.41404111)+1 种基金Natural Science Foundation of Hunan Province(No.2018JJ2258)Hunan Provincial Science and Technology Project Foundation(No.2018TP1018)
文摘To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT signal affected by strong interference.First,the approximate entropy,fuzzy entropy,sample entropy,and Lempel-Ziv(LZ)complexity are extracted from the magnetotelluric data.Then,four robust parameters are used as the inputs to the support vector machine(SVM)to train the sample library and build a model based on the different complexity of signals.Based on this model,we can only consider time series with strong interference when using the complementary ensemble empirical mode decomposition(CEEMD)and wavelet threshold(WT)for noise suppression.Simulation results suggest that the SVM based on the robust parameters can distinguish the time periods with strong interference well before noise suppression.Compared with the CEEMD WT,the proposed SVM-CEEMDWT method retains more low-frequency low-variability information,and the apparent resistivity curve is smoother and more continuous.Moreover,the results better reflect the deep electrical structure in the field.
基金co-supported by the China Geological Survey Project(DD20190012 and DD20160082)
文摘Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)has covered whole south China.
基金Supported by National Key Basic Research Program of China(973 Program)(No.3B813C254423)
文摘The Duobaoshan mine area in Heilongjiang is located in the northeast section of Xingmeng orogenic belt and is in the west side of Hegang Mountain-Heihe fault zone. There exist many deposits in this area,and its metallogenic conditions are superior,which has been one of the hotspots in geological prospecting and metallogenic research in Northeast China. On the basis of previous studies,the authors used the EH-4 electromagnetic imaging system to carry out the data acquisition of three survey lines in Woduhe Village,Duobaoshan Town,Nenjiang County. Through the analysis of apparent resistivity section under TE and TM polarization modes,integrating regional geological data,it is concluded that:(1) the electrical characteristics of the metal ore in this area show a relatively low resistance,and according to its resistivity difference with surrounding rocks,the geometrical structures and apparent resistivity parameters of the low resistivity bodies in the lower section of the survey line are defined,and the electrical anomalies can be identified;(2)faults F1 and F2 may have a good metallogenic environment,so they are recommended for further exploration;(3) low resistance metal ore bodies have good correlation with local small structures or faults,which may play an iconic role for the delineation of key target areas;(4) in the process of using apparent resistivity to define the geometric structures of ore bodies underground,comprehensive analysis integrating the advantages of TE and TM models should be carry out to achieve more reliable inversion results.
文摘Two superwide bands of frequency magnetotelluric (MT) profiles (Yadong-Xuegula, Jilong-Cuoqin) across the Yaluzangbu suture were deployed along the west-east direction, for the research into the electrical conductivity structure in the shallow and deep crust along the west-east and north-south directions in the southern part of Tibet plateau. The main characters of the electrical conductivity structure in this region are: (1) large-scale high resistive bodies exist near the Yaluzangbu suture surface, which extends to the maximum depth of more than 30 km. They are the reflection of the Gangdise granite; (2) small-scale conductive bodies exist in the southern part of the Yaluzangbu suture, and large-scale ones under the suture and in the northern part; (3) conductive bodies widely spread in the crust along the profiles. They are discontinuous, mainly decline to the north and become larger in scale, steeper near the suture, deeper gradually from south to north; (4) under the Yaluzangbu suture, the conductive bodies become larger in scale, more conductive gradually from west to east. These important electrical characters are caused possibly by the India plate subduction to the north. The variation in characters of the large-scale conductive bodies from west to east may be the proof that the plate collision might cause substantial movement along the west-east direction.
基金This work is financially supported by the National 863 Program(No:2014AA06A602)National Natural Science Foundation of China(Nos.41404111,41904076 and 42074084).
文摘The development of Tongchuan City,Shaanxi Province,located in the northwestern region of China,is restricted by water resources.The direct current resistivity and induced polarization sounding methods are typically applied in finding urban groundwater.These methods,however,are not effective due to their complicated topography and geological conditions.The application practice shows that the audio magnetotelluric(AMT)method has a large depth of exploration,high work effi ciency,and high lateral resolution.To investigate the distribution of groundwater resources,we deployed three audio-frequency magnetotelluric profiles in the city area.The impedance tensor information of AMT data is obtained using SSMT2000.AMT data dimension analysis reveals that the two-dimensional structural features of the observation area are obvious.The main structure of the observation area is about 45°northeast,as indicated by structural trend analysis.A shallow two-dimensional electrical profile of 1 km in Tongchuan City is obtained by two-dimensional nonlinear conjugate gradient inversion.Finally,combined with regional geological information,the geological structure characteristics reflected by the electrical profile were obtained along with the detailed characteristics of water-rich structures in the area.The infl uence of the structure on the groundwater distribution was analyzed,and the water-rich areas were identifi ed.This work contributes to the prospective development of Tongchuan City.
文摘【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提出了基于时间序列双向循环插补模型(Bidirectional recurrent imputation for time series,BRITS)的大地电磁脉冲类噪声处理方法。首先,将噪声干扰段删除,此时大地电磁时间序列可视为待插补的缺失序列,而后利用该缺失序列构建训练集,对BRITS模型进行插补训练,训练完成后对缺失序列进行插补,即可得到去噪结果。通过仿真及实测含噪声数据处理,并与经验模态分解(Empirical mode decomposition,EMD)阈值方法进行了对比。【结果和结论】结果表明:BRITS方法对仿真噪声数据处理后与原始数据的归一化互相关系数可达0.999以上,信噪比可达29 dB以上,EMD阈值方法处理前后相关系数为0.778,信噪比为3.09 dB;在实测数据处理中,BRITS方法有效恢复了噪声干扰数据,相比EMD阈值方法,其阻抗奈奎斯特图更接近天然大地电磁信号特征。通过不同训练样本试验得出:对4分量大地电磁数据而言,数据中至少需包含两道正常分量,单个含噪分量中噪声占比不大于20%,且噪声连续干扰长度不超过10个采样点,此时,BRITS方法去噪后数据的相关系数在0.96以上,可以保证一定的去噪精度。