In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without ...In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.展开更多
The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth i...The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.展开更多
In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and...In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).展开更多
It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the lan...It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau.展开更多
Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China,the orogenic process and its mechanism remain a matter of dispute.Previous geodynamic studies have mostly focused on...Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China,the orogenic process and its mechanism remain a matter of dispute.Previous geodynamic studies have mostly focused on collisional orogeny,which is commonly invoked to explain the Jiangnan Orogen.However,it is difficult for such hypotheses to reconcile all the geological and geophysical data,especially the absence of ultrahigh-pressure metamorphic rocks.Based on the magnetotelluric data,we present a group of resistivity models produced through the combination of two-dimensional and three-dimensional inversions,revealing the geo-electrical structures of Jiangnan and a typical collisional orogen.In our models,the resistive crust is separated into three parts by a prominent conductive layer with opposite dipping directions on both sides.A special thrust-nappe system,which is different from that developed in a typical collisional process,is revealed in the Jiangnan Orogen.This structure suggests a process different from the simple collisional orogeny.To interpret our observations,an'intra-continental orogeny'is proposed to address the development of the Jiangnan Orogen in the Mesozoic.Furthermore,this'reworked'process may contain at least two stages caused by the decoupling of the lithosphere,which is revealed by an extra conductive layer beneath Jiangnan.展开更多
To extend our successful Magnetotelluric(MT) experiments in the area from Yadong to Bamocuo in 1995 (Chen et al., 1996), two new Magnetotelluric(MT)experiments have been carried out along two main profiles in the cent...To extend our successful Magnetotelluric(MT) experiments in the area from Yadong to Bamocuo in 1995 (Chen et al., 1996), two new Magnetotelluric(MT)experiments have been carried out along two main profiles in the central and Northern Tibetan Plateau in the summer of 1998 and 1999. While the 1995 MT work mainly focused on the study of the electrical structure of the Yarlung\|Zangbo River Suture , the 1998 and 1999 experiments have been designed with following purpose:(1) Study whether partially molten layer widely exists in the crust of the central and northern Tibet.(2) Study the electrical structures of crust and upper mantle in central and northern Tibet which may relate to the attenuated Shear Seismic waves.(3) Study the detail electrical structures of Bangong\|Nujiang Suture and Jinsha Suture.In 1998, the MT team (China University of Geosciences, University of Washington and Geological Survey of Canada) recorded MT data along the Tibet 500 Line which extends about three hundred and eighty kilometers from Deqing to Longweicuo. We used LIMS system to record the long period(20~20000s) MT data at twenty\|six sites and used MT24 to record broadband(320Hz,2000s) MT data at fifty\|eight sites.展开更多
With the increase in the coverage area of magnetotelluric data,three-dimensional magnetotelluric modeling in spherical coordinates and its differences with respect to traditional Cartesian modeling have gradually attr...With the increase in the coverage area of magnetotelluric data,three-dimensional magnetotelluric modeling in spherical coordinates and its differences with respect to traditional Cartesian modeling have gradually attracted attention.To fully understand the influence of the Earth’s curvature and map projection deformations on Cartesian modeling,qualitative and quantitative analyses based on realistic three-dimensional models need to be examined.Combined with five representative map projections,a type of model conversion method that transforms the original spherical electrical conductivity model to Cartesian coordinates is described in this study.The apparent resistivity differences between the spherical western United States electrical conductivity model and the corresponding five Cartesian models are then compared.The results show that the cylindrical equal distance map projection has the smallest error.A meridian convergence correction resulting from the deformation of the map projection is introduced to rotate the Cartesian impedance tensor from grid north to geographic north,which reduces differences from the spherical results.On the basis of the magnetotelluric field data,the applicability of the Cartesian coordinate system to western and contiguous United States models is quantitatively evaluated.Precise interpretations of the contiguous United States model were found to require spherical coordinates.展开更多
This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layer...This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.展开更多
The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8...The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).展开更多
The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northwar...The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northward, extends downward up to the depth of about 55 km and indicates the exposure of the possible real position of the Yarlung Zangbo suture. There are three sets of electrical gradient and distorted zones reflecting the structure of faults in the high conductivity region. These three fault belts, which dip northward and gradually converge downward to the main fault belt, and a series of south dipping faults in the north side form the exhaled structural characteristics of the Yarlung Zangbo suture. There is a close relationship between the large high conductivity body and the underground thermal state.展开更多
文摘In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.
基金supported by the China Geological Survey(Grant No.DD20230254)。
文摘The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.
文摘In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).
基金supported by the National Natural Science Foundation of China(42372339)the China Geological Survey Project(DD20221816,DD20190319)。
文摘It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau.
基金funded by the Anhui Province Science Program(2018-g-1-4)the National Science Program(Nos.41630320,42174087)the National Key R&D Program of China(No.2016YFC0600201)。
文摘Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China,the orogenic process and its mechanism remain a matter of dispute.Previous geodynamic studies have mostly focused on collisional orogeny,which is commonly invoked to explain the Jiangnan Orogen.However,it is difficult for such hypotheses to reconcile all the geological and geophysical data,especially the absence of ultrahigh-pressure metamorphic rocks.Based on the magnetotelluric data,we present a group of resistivity models produced through the combination of two-dimensional and three-dimensional inversions,revealing the geo-electrical structures of Jiangnan and a typical collisional orogen.In our models,the resistive crust is separated into three parts by a prominent conductive layer with opposite dipping directions on both sides.A special thrust-nappe system,which is different from that developed in a typical collisional process,is revealed in the Jiangnan Orogen.This structure suggests a process different from the simple collisional orogeny.To interpret our observations,an'intra-continental orogeny'is proposed to address the development of the Jiangnan Orogen in the Mesozoic.Furthermore,this'reworked'process may contain at least two stages caused by the decoupling of the lithosphere,which is revealed by an extra conductive layer beneath Jiangnan.
文摘To extend our successful Magnetotelluric(MT) experiments in the area from Yadong to Bamocuo in 1995 (Chen et al., 1996), two new Magnetotelluric(MT)experiments have been carried out along two main profiles in the central and Northern Tibetan Plateau in the summer of 1998 and 1999. While the 1995 MT work mainly focused on the study of the electrical structure of the Yarlung\|Zangbo River Suture , the 1998 and 1999 experiments have been designed with following purpose:(1) Study whether partially molten layer widely exists in the crust of the central and northern Tibet.(2) Study the electrical structures of crust and upper mantle in central and northern Tibet which may relate to the attenuated Shear Seismic waves.(3) Study the detail electrical structures of Bangong\|Nujiang Suture and Jinsha Suture.In 1998, the MT team (China University of Geosciences, University of Washington and Geological Survey of Canada) recorded MT data along the Tibet 500 Line which extends about three hundred and eighty kilometers from Deqing to Longweicuo. We used LIMS system to record the long period(20~20000s) MT data at twenty\|six sites and used MT24 to record broadband(320Hz,2000s) MT data at fifty\|eight sites.
基金the National Natural Science Foundation of China(Nos.42220104002,42104073,and 41630317).
文摘With the increase in the coverage area of magnetotelluric data,three-dimensional magnetotelluric modeling in spherical coordinates and its differences with respect to traditional Cartesian modeling have gradually attracted attention.To fully understand the influence of the Earth’s curvature and map projection deformations on Cartesian modeling,qualitative and quantitative analyses based on realistic three-dimensional models need to be examined.Combined with five representative map projections,a type of model conversion method that transforms the original spherical electrical conductivity model to Cartesian coordinates is described in this study.The apparent resistivity differences between the spherical western United States electrical conductivity model and the corresponding five Cartesian models are then compared.The results show that the cylindrical equal distance map projection has the smallest error.A meridian convergence correction resulting from the deformation of the map projection is introduced to rotate the Cartesian impedance tensor from grid north to geographic north,which reduces differences from the spherical results.On the basis of the magnetotelluric field data,the applicability of the Cartesian coordinate system to western and contiguous United States models is quantitatively evaluated.Precise interpretations of the contiguous United States model were found to require spherical coordinates.
文摘This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.
文摘The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).
基金The study is supported by National Natural Science Foundation of China
文摘The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northward, extends downward up to the depth of about 55 km and indicates the exposure of the possible real position of the Yarlung Zangbo suture. There are three sets of electrical gradient and distorted zones reflecting the structure of faults in the high conductivity region. These three fault belts, which dip northward and gradually converge downward to the main fault belt, and a series of south dipping faults in the north side form the exhaled structural characteristics of the Yarlung Zangbo suture. There is a close relationship between the large high conductivity body and the underground thermal state.