Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different...Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.展开更多
Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO t...Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm.V-1-s-1 and the lowest resistivity of 2.4× 10^-3 Ω.cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.展开更多
This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18...This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.展开更多
The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U...The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.展开更多
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore co...Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .展开更多
对甘肃夏河高寒草甸不同海拔梯度的土壤理化性质分异规律进行了研究,以期探究土壤理化性质与海拔之间的关系。结果表明:除0~10 cm 土层电导率外,其余各土层土壤理化指标均与海拔呈显著相关(P 〈0.05),其中,含水量、有机质含量均随海...对甘肃夏河高寒草甸不同海拔梯度的土壤理化性质分异规律进行了研究,以期探究土壤理化性质与海拔之间的关系。结果表明:除0~10 cm 土层电导率外,其余各土层土壤理化指标均与海拔呈显著相关(P 〈0.05),其中,含水量、有机质含量均随海拔升高而升高,且随土壤深度增加而降低;pH 随海拔升高呈先降低后升高的势态;0~10 cm 表层土壤全氮含量随海拔升高显著增加(P 〈0.05),10~30 cm 土层全氮含量随海拔的升高先缓慢下降后平缓上升。因此,对于该区域草甸生态系统的管理与利用,不但考虑植被类型及状况,也需关注不同海拔梯度的草地土壤理化特性。展开更多
CoAl LDHs with different molar ratio of Ni have been prepared by chemical co -precipitation method.XRD results show that these materials have layered struc tures.Electrochemical tests show that Co(Ni)Al LDHs as electr...CoAl LDHs with different molar ratio of Ni have been prepared by chemical co -precipitation method.XRD results show that these materials have layered struc tures.Electrochemical tests show that Co(Ni)Al LDHs as electrode material hav e typical capacit ive properties in a wide voltage range of0.0to0.6V;Co(Ni)Al LDH(Ni∶Co =4∶6)as an electrode material has the highest capacitance of960F · g -1 and good cycling performance.But the poor capacitive properties of NiAl LDH electrode are showed in a narrow voltage range of0.3to0.55V.展开更多
基金supported by the National Science and Technology Pillar Program,China(Grant No.2015BAK17B06)the Earthquake Industry Special Science Research Foundation Project,China(Grant No.201508026-02)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(Grant No.A201310)the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province,China(Grant No.LBHQ13040)
文摘Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.
基金supported by the National Natural Science Foundation of China (Grant No. 10974174)the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Z6100117, Z1110057, and Y4080171)
文摘Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm.V-1-s-1 and the lowest resistivity of 2.4× 10^-3 Ω.cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.
基金supported by the National Natural Science Foundation of China (Grant No. 60807001)the National Basic Research Program of China (Grant No. 2011CB201605)the Foundation of Henan Educational Committee (Grant No. 2010A140017)
文摘This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.
文摘The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.
基金Natural Science Foundation of Anhui Province, 2008085QG343, Research on Development and Evolution Mechanism and Policy of Artificial Intelligence Open Innovation Platform。
文摘Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .
文摘对甘肃夏河高寒草甸不同海拔梯度的土壤理化性质分异规律进行了研究,以期探究土壤理化性质与海拔之间的关系。结果表明:除0~10 cm 土层电导率外,其余各土层土壤理化指标均与海拔呈显著相关(P 〈0.05),其中,含水量、有机质含量均随海拔升高而升高,且随土壤深度增加而降低;pH 随海拔升高呈先降低后升高的势态;0~10 cm 表层土壤全氮含量随海拔升高显著增加(P 〈0.05),10~30 cm 土层全氮含量随海拔的升高先缓慢下降后平缓上升。因此,对于该区域草甸生态系统的管理与利用,不但考虑植被类型及状况,也需关注不同海拔梯度的草地土壤理化特性。
文摘CoAl LDHs with different molar ratio of Ni have been prepared by chemical co -precipitation method.XRD results show that these materials have layered struc tures.Electrochemical tests show that Co(Ni)Al LDHs as electrode material hav e typical capacit ive properties in a wide voltage range of0.0to0.6V;Co(Ni)Al LDH(Ni∶Co =4∶6)as an electrode material has the highest capacitance of960F · g -1 and good cycling performance.But the poor capacitive properties of NiAl LDH electrode are showed in a narrow voltage range of0.3to0.55V.