In this review,the recent developments in microelectronics,spintronics,and magnonics have been summarized and compared.Firstly,the history of the spintronics has been briefly reviewed.Moreover,the recent development o...In this review,the recent developments in microelectronics,spintronics,and magnonics have been summarized and compared.Firstly,the history of the spintronics has been briefly reviewed.Moreover,the recent development of magnonics such as magnon-mediated current drag effect(MCDE),magnon valve effect(MVE),magnon junction effect(MJE),magnon blocking effect(MBE),magnon-mediated nonlocal spin Hall magnetoresistance(MNSMR),magnon-transfer torque(MTT)effect,and magnon resonant tunneling(MRT)effect,magnon skin effect(MSE),etc.,existing in magnon junctions or magnon heterojunctions,have been summarized and their potential applications in memory and logic devices,etc.,are prospected,from which we can see a promising future for spintronics and magnonics beyond micro-electronics.展开更多
Skyrmions are very promising for applications in spintronics and magnetic memory.It is desired to manipulate and operate a single skyrmion.Here we report on the thermal effect on the motion of current-driven magnetic ...Skyrmions are very promising for applications in spintronics and magnetic memory.It is desired to manipulate and operate a single skyrmion.Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal.The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque,an effect of the transverse and longitudinal Skyrmions drift velocities,thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density,which can be used as a Skyrmion valve.展开更多
基金Project supported by the National Key Research and Development Program of China(Grants No.2017YFA0206200)the National Natural Science Foundation of China(Grant Nos.51831012 and 12134107)the Beijing Natural Science Foundation(Grant No.Z201100004220006)。
文摘In this review,the recent developments in microelectronics,spintronics,and magnonics have been summarized and compared.Firstly,the history of the spintronics has been briefly reviewed.Moreover,the recent development of magnonics such as magnon-mediated current drag effect(MCDE),magnon valve effect(MVE),magnon junction effect(MJE),magnon blocking effect(MBE),magnon-mediated nonlocal spin Hall magnetoresistance(MNSMR),magnon-transfer torque(MTT)effect,and magnon resonant tunneling(MRT)effect,magnon skin effect(MSE),etc.,existing in magnon junctions or magnon heterojunctions,have been summarized and their potential applications in memory and logic devices,etc.,are prospected,from which we can see a promising future for spintronics and magnonics beyond micro-electronics.
基金Project supported by the National Natural Science Foundation of China(Grant No.51331006)the Fund from the Chinese Academy of Sciences(Grant No.KJZD-EW-M05)
文摘Skyrmions are very promising for applications in spintronics and magnetic memory.It is desired to manipulate and operate a single skyrmion.Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal.The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque,an effect of the transverse and longitudinal Skyrmions drift velocities,thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density,which can be used as a Skyrmion valve.