Double main phase process is applied to fabricate [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7;M = Cu, Al, Co, and Nb) sintered magnets with high misch metal (MM) content. In comparison to the magnets by sing...Double main phase process is applied to fabricate [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7;M = Cu, Al, Co, and Nb) sintered magnets with high misch metal (MM) content. In comparison to the magnets by single main phase process, the enhanced magnetic properties have been achieved. For magnets of x = 0.7, Hcj increases to 371.9 kA/m by 60.5%, and (BH)max is significantly enhanced to 253.3 kJ/m3 by 56.9%, compared with those of the single main phase magnets of the same nominal composition. In combination with minor loops and magnetic recoil curves, the property improvement of magnets with double main phase method is well explained. As a result, it is demonstrated that double main phase technology is an effective approach to improve the permanent magnetic properties of MM based sintered magnets.展开更多
On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study t...On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.展开更多
A three-stage homogenate extraction was used as a new method for inulin extraction from Jerusalem artichoke tubers. Compared with the results from conventional hot water extraction, the three-stage homogenate extracti...A three-stage homogenate extraction was used as a new method for inulin extraction from Jerusalem artichoke tubers. Compared with the results from conventional hot water extraction, the three-stage homogenate extraction gave higher yields and caused less degradation of the inulin. The inulin crude extract was then clarified by a carbonate-precipitation method, during which three variables -- the quicklime mass, the reaction temperature and the reaction time were optimized for the main liming process to give the best clarification effect. A Plackett- Burman design, the path of steepest ascent method, a Box- Behnken design and response surface methodology (RSM) were employed in the experimental design. The optimal conditions for the main liming process were determined to be 12.0g/L, 71.4℃ and 8min. The confirmatory tests proved that the best clarification efficiency (92.74%) was achieved at these conditions and this was approximately equal to the value predicted by the model.展开更多
基金Project supported by the National Natural Foundation of China(Grant Nos.51590880,11564030,and 51571126)the National Key Research Program of China(Grant No.2016YFB0700903)+3 种基金Fujian Institute of Innovation,Chinese Academy of Sciences(Grant No.FJCXY18040302)the Key Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-M05-1)the Inner Mongolia Science and Technology Major Project of 2016,Chinathe Natural Science Foundation of Inner Mongolia,China(Grant Nos.2018LH05006 and 2018LH05011)。
文摘Double main phase process is applied to fabricate [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7;M = Cu, Al, Co, and Nb) sintered magnets with high misch metal (MM) content. In comparison to the magnets by single main phase process, the enhanced magnetic properties have been achieved. For magnets of x = 0.7, Hcj increases to 371.9 kA/m by 60.5%, and (BH)max is significantly enhanced to 253.3 kJ/m3 by 56.9%, compared with those of the single main phase magnets of the same nominal composition. In combination with minor loops and magnetic recoil curves, the property improvement of magnets with double main phase method is well explained. As a result, it is demonstrated that double main phase technology is an effective approach to improve the permanent magnetic properties of MM based sintered magnets.
基金supported by National Natural Science Foundation of China (41304046)
文摘On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.
文摘A three-stage homogenate extraction was used as a new method for inulin extraction from Jerusalem artichoke tubers. Compared with the results from conventional hot water extraction, the three-stage homogenate extraction gave higher yields and caused less degradation of the inulin. The inulin crude extract was then clarified by a carbonate-precipitation method, during which three variables -- the quicklime mass, the reaction temperature and the reaction time were optimized for the main liming process to give the best clarification effect. A Plackett- Burman design, the path of steepest ascent method, a Box- Behnken design and response surface methodology (RSM) were employed in the experimental design. The optimal conditions for the main liming process were determined to be 12.0g/L, 71.4℃ and 8min. The confirmatory tests proved that the best clarification efficiency (92.74%) was achieved at these conditions and this was approximately equal to the value predicted by the model.