期刊文献+
共找到1,432篇文章
< 1 2 72 >
每页显示 20 50 100
Cloning, Characterization and Transformation of Methyltransferase 2a Gene (Zmet2a) in Maize (Zea mays L.)
1
作者 Xin Qi Yu Wang +5 位作者 Xing Zhang Xiaoshuang Wei Xinyang Liu Zhennan Wang Zhenhui Wang Fenglou Ling 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1767-1779,共13页
DNA methylation is an important epigenetic regulatory mechanism,it regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s)to DNA.In this stu... DNA methylation is an important epigenetic regulatory mechanism,it regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s)to DNA.In this study,a novel methyltransferase 2a gene(Zmet2a)was cloned in maize and identified by polymerase chain reaction-base(PCR-base)using a bioinformatics strategy.The Zmet2a cDNA sequence is 2739 bp long and translates to 912 amino acid peptides.The Zmet2a protein revealed that it contains BAH and CHROMO structural domains,is a non-transmembrane protein that is hydrophilically unstable,and has no signal peptide structure.Meanwhile,we verified the biological roles of Zmet2a using transgenic Arabidopsis overexpressing Zmet2a and Zmet2a-knockout maize.Transgenic Zmet2a Arabidopsis thaliana showed highly significant advancement inflowering time,and Zmet2a-knockout maize showed advancement inflowering time,with significant changes in several traits.Altogether,these report the role of Zmet2a in the regulation offlowering time,which will lay a foundation for revealing the biological function and epigenetic regulation mechanism of Zmet2a in the growth,development andflowering of maize. 展开更多
关键词 DNA methylation METHYlTRANSFERASE zea mays l flowering time functional analysis
下载PDF
Phenotypic Characterization and QTL/Gene Identification for Internode Number and Length Related Traits in Maize
2
作者 Jing Li Fengjuan Gu +10 位作者 Guoqiang Wang Yingyi Zhang Xiangling Gong Wei Wei Xianchuang Zhang Lin Liu Hameed Gul Hong Duan Chaoxian Liu Qianlin Xiao Zhizhai Liu 《American Journal of Plant Sciences》 CAS 2024年第7期467-485,共19页
Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with ex... Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize. 展开更多
关键词 maize (zea mays l.) Internode No. Average Internode length Phenotypic Characterization Candidate Gene Discovery
下载PDF
Elite,transformable haploid inducers in maize
3
作者 Brent Delzer Dawei Liang +22 位作者 David Szwerdszarf Isadora Rodriguez Gonzalo Mardones Sivamani Elumalai Francine Johnson Samson Nalapalli Rachel Egger Erin Burch Kerry Meier Juan Wei Xiujuan Zhang Huaping Gui Huaibing Jin Huan Guo Kun Yu Yubo Liu Becky Breitinger Ana Poets Jason Nichols Wan Shi David Skibbe Qiudeng Que Timothy Kelliher 《The Crop Journal》 SCIE CSCD 2024年第1期314-319,共6页
The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome edit... The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome editing(GE).Recently,these techniques were combined into a GE trait delivery system called HI-Edit(Haploid Inducer-Edit).In HI-Edit,the pollen of a haploid inducer line is reprogrammed to deliver GE traits to any variety,obviating recurrent selection.For HI-Edit to operate at scale,an efficient transformable HI line is needed,but most maize varieties are recalcitrant to transformation,and haploid inducers are especially difficult to transform given their aberrant reproductive behaviors.Leveraging marker assisted selection and a three-tiered testing scheme,we report the development of new Iodent and Stiff Stalk maize germplasm that are transformable,have high haploid induction rates,and exhibit a robust,genetically-dominant anthocyanin native trait that may be used for rapid haploid identification.We show that transformation of these elite‘‘HI-Edit”lines is enhanced using the BABYBOOM and WUSCHEL morphogenetic factors.Finally,we evaluate the HI-Edit performance of one of the lines against both Stiff Stalk and non-Stiff Stalk testers.The strategy and results of this study should facilitate the development of commercially scalable HI-Edit systems in diverse crops. 展开更多
关键词 zea mays l Doubled haploids TRANSFORMATION Genome editing QTl
下载PDF
Determination and Quantification of Susceptibility of Heritance Resistance to Root Rot of Eight Commercial Genotypes of Maize (Zea mays L.)
4
作者 Lazaro José Quintas Neal Walker McLaren 《Agricultural Sciences》 CAS 2023年第5期665-684,共20页
Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Co... Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Corn root rot contributes greatly to the reduction in grain production and quality. The main objective of this work was to review the research on root rot in maize to determine the susceptibility of genotypes to root rot and to quantify the inheritance of resistance to root rot in maize. The methodology used was a complete 8 × 8 diallel design planted during the year 1999/2000. Root discoloration, plant length, root volume, effective volume and yield were the evaluated parameters. To analyze the data and determine the combinatorial abilities, genetic correlations, heritability and correlated response, diallel analysis was used. Eight parental lines;P28, I137TN, MP706, E739, MO17, B37, B73, and B14 were planted. The lines were crossed into each other, all combinations according to the complete diallel model (Model 1). The F1 was harvested after maturation. For statistical analysis, the version of the Agrobase program (2016) was used. Results show that F1 hybrids showed significant differences in root rot discoloration, plant height, root volume, effective root volume and yield. The P28 line and the B73XE739 cross had, respectively, the highest general and specific combinations. Root discoloration had the highest genetic correlation (r<sub>A</sub> = 0.47) with plant length. Broad and narrow heritability for root rot discoloration were, respectively, h<sup>2</sup> = 0.81 and h<sub>2</sub><sub> </sub>= 0.51. Root rot discoloration showed the highest correlated response (C<sub>R</sub> = 0.14) on plant length. 展开更多
关键词 maize (zea mays l.) DISCOlORATION INHERITANCE Hybrid Inbreeds lines
下载PDF
Maize cryptochromes 1a1 and 1a2 promote seedling photomorphogenesis and shade resistance in Zea mays and Arabidopsis
5
作者 Xiaocong Fan Shizhan Chen +12 位作者 Wenjing Wu Meifang Song Guanghua Sun Shuaitao Yao Weimin Zhan Lei Yan Hongdan Li Yanpei Zhang Lijian Wang Kang Zhang Liangliang Jiang Jianping Yang Qinghua Yang 《The Crop Journal》 SCIE CSCD 2023年第4期1192-1203,共12页
Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To inv... Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars. 展开更多
关键词 zea mays l.Cryptochrome PHOTOMORPHOGENESIS Shade avoidance syndrome Hormone
下载PDF
Use of the Biostimulant Based on the Mycorrhizae Consortium of the Glomeraceae Family in the Field to Improve the Production and Nutritional Status of Maize (Zea mays L.) Plants in Central Benin
6
作者 Corentin Akpodé Sylvestre Abado Assogba +6 位作者 Sêmassa Mohamed Ismaël Hoteyi Mèvognon Ricardos Aguégué Nadège Adoukè Agbodjato Marcel Yévèdo Adoko Olaréwadjou Amogou Adolphe Adjanohoun Lamine Baba-Moussa 《Advances in Microbiology》 2023年第6期323-345,共23页
Excessive use of mineral fertilizers in maize farming negatively affects farmers’ income and impacts long-term soil health. This study aims to appreciate the effectiveness of biostimulant based on native Glomeraceae ... Excessive use of mineral fertilizers in maize farming negatively affects farmers’ income and impacts long-term soil health. This study aims to appreciate the effectiveness of biostimulant based on native Glomeraceae arbuscular mycorrhizal fungi on the production and uptake of phosphorus, nitrogen and potassium of maize (Zea mays L.) plants in central Benin. The trials were set up in a farming environment with thirty-four producers. The experimental design was composed of three treatments installed at 34 producers. Three growth parameters were evaluated on 60 ème days after sowing. Grain yield, nutritional status of maize plants and mycorrhization parameters were determined at harvest. The results showed that the Glomeraceae + 50% NPK (NPK: azote-phosphore-potassium)_Urea treatment improved the height, the crown diameter and the leaf area by 17.85%, 21.79% and 28.32% compared to the absolute control and by 0.41%, 1.11% and 1.46% compared to the 100% NPK_Urea treatment, respectively. Similarly, grain yield improved by 45.87% with the use of Glomeraceae + 50% NPK_Urea compared to the absolute control and by 3.96% compared to the 100% NPK_Urea treatment. The Glomeraceae + 50% NPK_Urea significantly improved the phosphorus and potassium uptake of maize plants. With respect to nitrogen uptake, no statistical difference was observed between treatments. The mycorrhizae strains used improved root infection in the maize plants. We recorded 66% frequency and 40.5% intensity of mycorrhization. The biostimulant based on indigenous Glomeraceae combined with 50% NPK_Urea can be used as a strategy to restore soil health and improve maize productivity in Benin. 展开更多
关键词 Ecological Resilience MICROORGANISM Plant Nutrition Sustainable Agriculture zea mays l.
下载PDF
Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading 被引量:3
7
作者 Baizhao Ren Weizhen Yu +2 位作者 Peng Liu Bin Zhao Jiwang Zhang 《The Crop Journal》 SCIE CSCD 2023年第1期269-277,共9页
A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The... A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The responses of leaf gas exchange parameters and antioxidant enzyme activities of the summer maize hybrids Denghai 605(DH605)to waterlogging(W),shading(S),and their combination(W+S)for 6 days at the third leaf stage(V3),the sixth leaf stage(V6),and the tasseling stage(VT)were recorded.Shading,waterlogging,and their combination disturbed the activities of protective enzymes and increased the contents of H2O2and O-2,accelerating leaf senescence and disordering photosynthetic characteristics.Under waterlogging,shading and their combination,leaf Pn,the photo-assimilates and grain yield was decreased.The greatest reduction for waterlogging and the combined stresses occurred at V3 and that for shading stress occurred at VT.The individual and combined stresses reduced the activities of protective enzymes and inhibited photosynthesis,reducing the accumulation of photosynthetic compounds and thereby yield.Waterlogging and the combined stresses at the V3 stage showed the greatest effect on leaf photosynthetic and senescence,followed by the V6 and VT stages.The greatest effect for shading stress occurred at VT,followed by the V6 and V3 stages,and the combined influence of shading and waterlogging was greater than that of either single stress. 展开更多
关键词 zea mays l. PHOTOSYNTHETIC Antioxidant enzymes Waterlogging and shading treatment
下载PDF
Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014 被引量:1
8
作者 GAO Xing LI Yong-xiang +5 位作者 YANG Ming-tao LI Chun-hui SONG Yan-chun WANG Tian-yu LI Yu SHI Yun-su 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期691-700,共10页
Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across mu... Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across multiple environments.We found that the grain-filling duration(54.46%)and rate(43.40%)at the effective grain-filling phase greatly contributed to the final performance parameter of 100-kernel weight(HKW).Meanwhile,along with the significant increase in HKW,the accumulated growing degree days(GDDs)for the actual grain-filling period duration(AFPD)among the selected brand hybrids released from the 1960s to the 2010s in China had a decadal increase of 23.41℃ d.However,there was a decadal increase of only 19.76℃ d for GDDs of the days from sowing to physiological maturity(DPM),which was also demonstrated by a continuous decrease in the ratio between the days from sowing to silking(DS)and DPM(i.e.,from 53.24%in the 1960s to 49.78%in the 2010s).In contrast,there were no significant changes in grain-filling rate along with the release years of the selected hybrids.Moreover,the stability of grain-filling characteristics across environments also significantly increased along with the hybrid release years.We also found that the exotic hybrids showed a longer grain-filling duration at the effective grain-filling phase and more stability of the grain-filling characteristics than those of the Chinese local hybrids.According to the results of this study,it is expected that the relatively longer grain-filling duration,shorter DS,higher grain-filling rate,and steady grain-filling characteristics would contribute to the yield improvement of maize hybrids in the future. 展开更多
关键词 maize(zea mays l.) grain-filling rate grain-filling duration stability
下载PDF
GA Associated Dwarf 5 encodes an ent-kaurenoic acid oxidase required for maize gibberellin biosynthesis and morphogenesis 被引量:1
9
作者 Zuliang Li Baozhu Li +8 位作者 Junli Zhang Hongliang Wang Mao Wang Siyi Guo Pengtao Wang Zhi Li David WGalbraith Dandan Li Chun-Peng Song 《The Crop Journal》 SCIE CSCD 2023年第6期1742-1751,共10页
Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),charact... Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance. 展开更多
关键词 maize(zea mays l.) ZmGAD5 GA biosynthesis KAO
下载PDF
Increasing Fusarium verticillioides resistance in maize by genomicsassisted breeding:Methods,progress,and prospects 被引量:1
10
作者 Yufang Xu Zhirui Zhang +5 位作者 Ping Lu Ruiqi Li Peipei Ma Jianyu Wu Tao Li Huiyong Zhang 《The Crop Journal》 SCIE CSCD 2023年第6期1626-1641,共16页
Maize(Zea mays L.)is an indispensable crop worldwide for food,feed,and bioenergy production.Fusarium verticillioides(F.verticillioides)is a widely distributed phytopathogen and incites multiple destructive diseases in... Maize(Zea mays L.)is an indispensable crop worldwide for food,feed,and bioenergy production.Fusarium verticillioides(F.verticillioides)is a widely distributed phytopathogen and incites multiple destructive diseases in maize:seedling blight,stalk rot,ear rot,and seed rot.As a soil-,seed-,and airborne pathogen,F.verticillioides can survive in soil or plant residue and systemically infect maize via roots,contaminated seed,silks,or external wounds,posing a severe threat to maize production and quality.Infection triggers complex immune responses:induction of defense-response genes,changes in reactive oxygen species,plant hormone levels and oxylipins,and alterations in secondary metabolites such as flavonoids,phenylpropanoids,phenolic compounds,and benzoxazinoid defense compounds.Breeding resistant maize cultivars is the preferred approach to reducing F.verticillioides infection and mycotoxin contamination.Reliable phenotyping systems are prerequisites for elucidating the genetic structure and molecular mechanism of maize resistance to F.verticillioides.Although many F.verticillioides resistance genes have been identified by genome-wide association study,linkage analysis,bulkedsegregant analysis,and various omics technologies,few have been functionally validated and applied in molecular breeding.This review summarizes research progress on the infection cycle of F.verticillioides in maize,phenotyping evaluation systems for F.verticillioides resistance,quantitative trait loci and genes associated with F.verticillioides resistance,and molecular mechanisms underlying maize defense against F.verticillioides,and discusses potential avenues for molecular design breeding to improve maize resistance to F.verticillioides. 展开更多
关键词 maize(zea mays l.) Fusarium verticillioides Disease resistance Molecular design breeding
下载PDF
Screening Methods for Waterlogging Tolerance at Maize (Zea mays L.) Seedling Stage 被引量:16
11
作者 LIU Yong-zhong, TANG Bin, ZHENG Yong-lian, MA Ke-jun, XU Shang-zhong and QIU Fa-zhan National Key Laboratory of Crop Genetic Improvement/Huazhong Agricultural University, Wuhan 430070, P.R.China 《Agricultural Sciences in China》 CSCD 2010年第3期362-369,共8页
Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and th... Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and the best continuous treatment time to waterlogging, 20 common maize inbred lines were subjected to successive artificial waterflooding at seedling stage, and waterlogging tolerance coefficient (WTC) was used to screen waterflooding tolerant genotypes. In addition, peroxidase (POD) activities and malondialdehyde (MDA) contents were measured for 6 of 20 lines. The results showed that the second leaf stage (V2) was the most susceptible stage, and 6 d after waterflooding was the best continuous treatment time. Dry weight (DW) of both shoots and roots of all lines were significantly reduced at 6 d time-point of waterlogging, compared to control. POD activities and MDA contents were negatively and significantly correlated, and the correlation coefficient was -0.9686 (P 〈 0.0001). According to the results, WTC of shoot DW can be used for practical screening as a suitable index, which is significantly different from control and waterlogged plants happened 6 d earlier. Furthermore, leaf chlorosis, MDA content and POD activities could also be used as reference index for material screening. The implications of the results for waterlogging-tolerant material screening and waterlogging-tolerant breeding have been discussed in maize. 展开更多
关键词 maize (zea mays l. waterlogging tolerance screening method selection criteria
下载PDF
Top-grain filling characteristics at an early stage of maize(Zea mays L.) with different nitrogen use efficiencies 被引量:12
12
作者 SHEN Li-xia HUANG Yan-kai LI Ting 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第3期626-639,共14页
Maize genotypes vary significantly in their nitrogen use efficiencies(NUEs).Better understanding of early grain filling characteristics of maize is important,especially for maize with different NUEs.The objectives o... Maize genotypes vary significantly in their nitrogen use efficiencies(NUEs).Better understanding of early grain filling characteristics of maize is important,especially for maize with different NUEs.The objectives of this research were(i)to investigate the difference in apical kernel development of maize with different NUEs,(ii)to determine the reaction of apical kernel development to N application levels,and(iii)to evaluate the relationship between apical kernel development and grain yield(GY)for different genotypes of maize.Three maize hybrid varieties with different NUEs were cultivated in a field with different levels of N fertilizer arranged during two growing seasons.Kernel fresh weight(KFW),volume(KV)and dry weight(KDW)of apical kernel were evaluated at an early grain filling stage.Ear characteristics,GY and its components were determined at maturity stage.Apical kernel of the high N and high efficiency(HN-HE)type(under low N,the yield is lower,and under higher N,the yield is higher)developed better under high N(N210 and N240,pure N of 210 and 240 kg ha^–1)than at low N(N120 and N140,pure N of 120 and 140 kg ha^–1).The low N and high efficiency(LN-HE)type(under low N,the yield is higher,while under higher N,the yield is not significantly higher)developed better under low N than at high N.The double high efficiency(D-HE)type(for both low and high N,the yield is higher)performed well under both high and low N.Apical kernel reacted differently to the N supply.Apical kernel developed well at an early grain filling stage and resulted in a higher kernel number(KN),kernel weight(KW)and GY with better ear characteristics at maturity. 展开更多
关键词 zea mays l. grain filling nitrogen use efficiency kernel development
下载PDF
Activity of Acetolactate Synthase from Maize (Zea mays L.) as Influenced by Chlorsulfuron and Tribenuron-methyl 被引量:5
13
作者 FANZhi-jin CHENJun-peng 《Agricultural Sciences in China》 CAS CSCD 2003年第2期176-182,共7页
Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had hi... Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors, chlorsulfuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo. 展开更多
关键词 Chlorsulf uron TRIBENURON-METHYl Acetolactate synthase (AlS) maize (zea mays l.)
下载PDF
Influence of Zinc Nutrition on Growth and Yield Behaviour of Maize (<i>Zea mays</i>L.) Hybrids 被引量:5
14
作者 Azeem Tariq Shakeel A. Anjum +5 位作者 Mahmood A. Randhawa Ehsan Ullah Muhammad Naeem Rafi Qamar Umair Ashraf Mubashar Nadeem 《American Journal of Plant Sciences》 2014年第18期2646-2654,共9页
A field experiment was conducted during spring 2011 at Agronomic Research Area, University of Agriculture, Faisalabad, Pakistan to evaluate the comparative efficacy of Zn uptake and grain yield in three maize hybrids ... A field experiment was conducted during spring 2011 at Agronomic Research Area, University of Agriculture, Faisalabad, Pakistan to evaluate the comparative efficacy of Zn uptake and grain yield in three maize hybrids namely Pioneer-32F 10, Monsanto-6525 and Hycorn-8288 through the application of Zn in the form of ZnSO4. The ZnSO4 treatments comprised;soil application at the time of sowing @ 12 kg&middotha-1 (Zn1), foliar application at vegetative stage (9 leaf stage) @ 1% ZnSO4 solution (Zn2) and foliar application at reproductive stage (anthesis) @ 1% ZnSO4 solution (Zn3) and one treatment was kept as a control, where zinc was not applied (Zn0). The experimental results showed substantial difference in all physiological and yield parameters except plant height and stem diameter. Statistically maximum grain yield (8.76 t&middotha-1) was obtained with foliar spray of ZnSO4 at 9 leaf stage (Zn2) in case of Monsanto-6525. As regard to quality parameters, Pioneer-32F 10 and Hycorn-8288 accumulated more zinc contents in grains but Monsanto-6525 attained more zinc concentration in straw. Foliar spray of ZnSO4 at 9 leaf stage produced 19.42% more zinc contents in grains as compared to other ZnSO4 treatments. Foliar spray of ZnSO4 at 9 leaf stage in Monsanto-6525 hybrid produced higher grain yield. 展开更多
关键词 Grain Yield HYBRIDS maize (zea mays l.) ZnSO4
下载PDF
Establishment and Optimization of the Regeneration System of Mature Embryos of Maize (Zea mays L.) 被引量:3
15
作者 ZHAO Cheng-hao ZHANG Li-jun GE Chao HU Kai 《Agricultural Sciences in China》 CAS CSCD 2008年第9期1046-1051,共6页
A reliable system was developed for regeneration from mature embryos derived from callus of four maize inbred lines (Liao 7980, Dan 9818, Dan 340, and Dan 5026). The protocol was mainly based on a series of experime... A reliable system was developed for regeneration from mature embryos derived from callus of four maize inbred lines (Liao 7980, Dan 9818, Dan 340, and Dan 5026). The protocol was mainly based on a series of experiments involving the composition of culture medium. We found that 9 pM 2,4-dichlorophenoxyacetic acid in MS medium was optimum for the induction of callus. The induction frequency of primary calli was over 85% for four inbred lines tested. The addition of L- proline (12 mM) in subculture medium significantly promoted the formation of embryogenic callus but it did not significantly enhance growth rate of callus. Efficient shoot regeneration was obtained on regeneration medium containing 2.22 μM 6- benzylaminopurine in combinations with 4.64 μM Kinetin. Regenerated shoots were rooted on half-strength MS medium containing 2.85 μM indole-3-butyric acid. This plant regeneration system provides a foundation for genetic transformation of maize. 展开更多
关键词 maize (zea mays l. mature embryo callus induction embryogenic callus plant regeneration
下载PDF
Genomic and transcriptomic insights into cytochrome P450 monooxygenase genes involved in nicosulfuron tolerance in maize(Zea mays L.) 被引量:2
16
作者 LIU Xiao-min XU Xian +4 位作者 LI Bing-hua YAO Xiao-xia ZHANG Huan-huan WANG Gui-qi HAN Yu-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第8期1790-1799,共10页
Postemergence application of nicosulfuron for weed control in maize fields can cause great damage to certain maize inbred lines and hybrids. Two maize genotypes, tolerant inbred(HBR) and sensitive inbred(HBS), were fo... Postemergence application of nicosulfuron for weed control in maize fields can cause great damage to certain maize inbred lines and hybrids. Two maize genotypes, tolerant inbred(HBR) and sensitive inbred(HBS), were found to significantly differ in their phenotypic responses to nicosulfuron, with the EC50(50% effective concentration) values differed statistically(763.6 and 5.9 g a.i. ha–1, respectively). Pre-treatment with malathion, a known cytochrome P450 inhibitor, increased nicosulfuron injury in both HBR and HBS. Our results support the hypothesis that nicosulfuron selectivity in maize is associated with cytochrome P450 metabolism. Further analysis of the maize genome resulted in the identification of 314 full length cytochrome P450 monooxygenase(CYP) genes. These genes were classified into 2 types, 10 clans and 44 families. The CYP71 clan was represented by all A-type genes(168) belonging to 17 families. Nine clans possessed 27 families containing 146 non-A-type genes. The consensus sequences of the heme-binding regions of A-type and non-A-type CYP proteins are ‘PFGXGRRXCPG’ and ‘FXXGPRXCXG’, respectively. Illumina transcriptome sequence results showed that there were 53 differentially expressed CYP genes on the basis of high variation in expression between HBS and HBR, nicosulfuron-treated and untreated samples. These genes may contribute to nicosulfuron tolerance in maize. A hierarchical clustering analysis obtained four main clusters named C1 to C4 in which 4, 15, 21, and 13 CYP genes were found in each respective cluster. The expression patterns of some CYP genes were confirmed by RT-q PCR analysis. The research will improve our understanding of the function of maize cytochrome P450 in herbicide metabolism. 展开更多
关键词 cytochrome P450 zea mays l. MAlATHION NICOSUlFURON herbicide metabolism
下载PDF
QTL analysis of the developmental changes in cell wall components and forage digestibility in maize(Zea mays L.) 被引量:3
17
作者 LI Kun YANG Xue +8 位作者 LIU Xiao-gang HU Xiao-jiao WU Yu-jin WANG Qi MA Fei-qian LI Shu-qiang WANG Hong-wu LIU Zhi-fang HUANG Chang-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第12期3501-3513,共13页
Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting th... Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting the structure and strength of the cell wall.To explore cell wall development during secondary cell wall lignification in maize stalks,conventional and conditional genetic mapping were used to identify the dynamic quantitative trait loci(QTLs)of the cell wall components and digestibility traits during five growth stages after silking.Acid detergent lignin(ADL),cellulose(CEL),acid detergent fiber(ADF),neutral detergent fiber(NDF),and in vitro dry matter digestibility(IVDMD)were evaluated in a maize recombinant inbred line(RIL)population.ADL,CEL,ADF,and NDF gradually increased from 10 to 40 days after silking(DAS),and then they decreased.IVDMD initially decreased until 40 DAS,and then it increased slightly.Seventytwo QTLs were identified for the five traits,and each accounted for 3.48–24.04%of the phenotypic variation.Six QTL hotspots were found,and they were localized in the 1.08,2.04,2.07,7.03,8.05,and 9.03 bins of the maize genome.Within the interval of the pleiotropic QTL identified in bin 1.08 of the maize genome,six genes associated with cell wall component biosynthesis were identified as potential candidate genes for stalk strength as well as cell wall-related traits.In addition,26 conditional QTLs were detected in the five stages for all of the investigated traits.Twenty-two of the 26 conditional QTLs were found at 30 DAS conditioned using the values of 20 DAS,and at 50 DAS conditioned using the values of 40 DAS.These results indicated that cell wall-related traits are regulated by many genes,which are specifically expressed at different stages after silking.Simultaneous improvements in both forage digestibility and lodging resistance could be achieved by pyramiding multiple beneficial QTL alleles identified in this study. 展开更多
关键词 quantitative trait loci maize(zea mays l.) cell wall components forage quality
下载PDF
Mapping of QTLs Associated with Seed Vigor to Artificial Aging Using Two RIL Populations in Maize (<i>Zea mays</i>L.) 被引量:3
18
作者 Zanping Han Wang Bin +4 位作者 Jun Zhang Shulei Guo Hengchao Zhang Lengrui Xu Yanhui Chen 《Agricultural Sciences》 2018年第4期397-415,共19页
Improvement in seed vigor under adverse condition is an important object in maize breeding nowadays. Because the higher sowing quality of seeds is necessary for the development of the agriculture production and better... Improvement in seed vigor under adverse condition is an important object in maize breeding nowadays. Because the higher sowing quality of seeds is necessary for the development of the agriculture production and better able to resist all kinds of adversity in the seeds storage. So it is helpful for long-term preservation of germplasm resource. In our study, two connected recombinant inbred line (RIL) populations, which derived from the crosses Yu82 × Shen137 and Yu537A × Shen137 respectively, were evaluated for four related traits of seed vigor under three aging treatments. Meta-analysis was used to integrate genetic maps and detected QTL across two populations. In total, 74 QTL and 20 meta-QTL (mQTL) were detected. All QTLs with contributions (R2) over 10% were consistently detected in at least one of aging treatments and integrated in mQTL. Four key mQTLs (mQTL2-2, mQTL5-3, mQTL6 and mQTL8) with R2 of some initial QTLs > 10% included 5-9 initial QTLs associated with 2-4 traits. Therefore, the chromosome regions for four mQTLs with high QTL co-localization might be hot spots of the important QTLs for the associated traits. Twenty-two key candidate genes regulating four related traits of seed vigor mapped in 14 corresponding mQTLs. In particular, At5g67360, 45238345/At1g70730/At1g09640 and 298201206 were mapped within the important mQTL5-3, mQTL6 and mQTL8 regions, respectively. Fine mapping or construction of single chromosome segment lines for genetic regions of the three mQTLs is worth further study and could be put to use molecular marker-assisted breeding and pyramiding QTLs in maize. 展开更多
关键词 maize(zea mays l.) Seed VIGOR RIl QTl Artificial Aging
下载PDF
Breeding for Drought Tolerance in Maize (Zea mays L.) 被引量:4
19
作者 Abdoul-Raouf Sayadi Maazou Jialu Tu +1 位作者 Ju Qiu Zhizhai Liu 《American Journal of Plant Sciences》 2016年第14期1858-1870,共14页
Drought, like many other environmental stresses, has adverse effects on crop yield including maize (Zea mays L.). Low water availability is one of the major causes for maize yield reductions affecting the majority of ... Drought, like many other environmental stresses, has adverse effects on crop yield including maize (Zea mays L.). Low water availability is one of the major causes for maize yield reductions affecting the majority of the farmed regions around the world. Therefore, the development of drought-tolerant lines becomes increasingly more important. In maize, a major effect of water stress is a delay in silking, resulting in an increase in the anthesis-silking interval, which is an important cause of yield failures. Diverse strategies are used by breeding programs to improve drought tolerance. Conventional breeding has improved the drought tolerance of temperate maize hybrids and the use of managed drought environments, accurate phenotyping, and the identification and deployment of secondary traits has been effective in improving the drought tolerance of tropical maize populations and hybrids as well. The contribution of molecular biology will be potential to identify key genes involved in metabolic pathways related to the stress response. Functional genomics, reverse and forward genetics, and comparative genomics are all being deployed with a view to achieving these goals. However, a multidisciplinary approach, which ties together breeding, physiology and molecular genetics, can bring a synergistic understanding to the response of maize to water deficit and improve the breeding efficiency. 展开更多
关键词 maize (zea mays l.) Drought Stress Anthesis-Silking Interval BREEDING
下载PDF
Uptake and accumulation of copper by roots and shoots of maize( Zea mays L.) 被引量:1
20
作者 LIU Dong-hua J IANG Wu-sheng HOU Wen-qiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第2期228-232,共5页
The effects of different concentrations of copper sulfate on root and shoot growth of maize( Zea mays L.) and the uptake and accumulation of Cu2+ by its roots and shoots were investigated in the present study. The con... The effects of different concentrations of copper sulfate on root and shoot growth of maize( Zea mays L.) and the uptake and accumulation of Cu2+ by its roots and shoots were investigated in the present study. The concentrations of copper sulfate (CuSO4 (.) 5H(2)O) used were in the range of 10(-5) -10(-3)mol/L. Root growth decreased progressively with increasing concentration of Cu2+ in solution. The seedlings exposed to 10(-3) mol/L Cu2+ exhibited substantial growth reduction, yielding only 68% of the root length of the control. The shoot growth of the seedlings grown at 10(-5) -10(-4) mol/L Cu2+ were more or less the same as the control seedlings. The leaves treated with 10(-3) mol/L Cu2+ were obviously inhibited in shoot growth. The fresh and dry weights both in roots and shots decreased progressively with increasing Cu2+ concentration. This fits well with the above mentioned effects of copper sulfate on root growth. Zea mays has considerable ability to remove Cu from solutions and accumulate it. The Cu content in roots of Z. mays increased with increasing solution concentration of Cu2+. The amount of Cu in roots of plants treated with 10(-3), 10(-4) and 10(-5) mol/L Cu2+ were 10, 8 and 1.5 fold, respectively, greater than that of roots of control plane. However, the plants transported and concentrated only a small amount of Cu in their shoots. 展开更多
关键词 zea mays l. UPTAKE ACCUMUlATION Cu^(2%PlUS%)
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部