[ Objective ] The paper was to establish the near isogenic lines of Huangzaosi maize with resistance against maize head smut, and to provide basis for its wide application in breeding and production. [Method] Combing ...[ Objective ] The paper was to establish the near isogenic lines of Huangzaosi maize with resistance against maize head smut, and to provide basis for its wide application in breeding and production. [Method] Combing with hybrid, backcress and self-cross method, as well as molecular markers, Huangzaosi maize was successfully introduced with head smut resistance, and its near isogenic lines were studied. The characteristics of resistant and susceptible variation and the changes of combining ability of near isogenic lines after backcrossing breeding were observed. [ Result ] The incidence rate of Huangzansi maize in control was 46% ; the incidence rates of the selected 24 near isogenic lines of resistant Huangzaosi were all lower than 10%, and the selected rate was 92.6% ; the combining ability of most near isogenic lines of resistant Huangzaosi maize had no significant difference with that of H^i maize in control; the yields of hybrids prepared by several inbred lines such as M135 and M140 were outstanding, which exceeded the control Zhengdan 958, showing a higher combining ability. [ Conclusion] The phenotype and combining ability of near isngenic lines of Huangzaosi maize with resistance against maize head smut obtained in the test were very close to Huan- gzaosi, and its resistance against maize head smut was greatly increased, thus solving the problems of Huangzaesi without resistance against maize head smut.展开更多
The general combining ability(GCA), special combining ability(SCA) and genetic parameter of ten characters of 22 maize inbred lines including plant height and ear height were analyzed using 10×12 through inco...The general combining ability(GCA), special combining ability(SCA) and genetic parameter of ten characters of 22 maize inbred lines including plant height and ear height were analyzed using 10×12 through incomplete diallel cross(NC Ⅱ).The results showed that:(1) Among the 22 maize inbred lines, the yield GCAs of11 HN 097, 11 HN 099, 11 HN 105 and 11 HN 110 were high, which were elite inbred lines to collocate hybridized combinations with strong heterosis. The yield of11 HN110 × 11 HN097, 11 HN110 × 11 HN105, 11 HN112 × 11 HN 097 and 11 HN 106 × 11 HN 104 were in the first four place. The yielding abilities, adaptabilities and yielding stabilities of the four combinations can be further identified by experiment. The heredities of the ten characters were mainly controlled by additive gene effect whereas the influence of non-addictive gene effect was small. The narrow heritabilities of plant height, ear height, ear rows, ear length, kernels per row,100-grain weight and seed-producing percentage were more than 50%. The variances were mainly caused by heredity and early-generation selection should be conducted. The narrow heritabilities of ear diameter, bare tip length and yield was low, which should not be selected in early-generation.展开更多
The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The re...The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The results showed that the line F6 had the highest general combining ability (GCA) for yield, followed by F7, M3, M4 and M8. All of the five lines have great potential in maize breeding. The cross combination M3xF10 had the highest specific combining ability (SCA) for yield, showing strong heterosis. Heritability analysis of ear characteristics showed that GCA variance was higher than SCA variance in ear diameter, number of rows per ear and seed rate, and they were mainly controlled by the additive gene effect, indicating that that the selections for these traits are effective at early generations. The other three traits had lower SCA, for which the selections should be carried out at late generations. The correlation analysis revealed that ear length, number of grains per row, ear diameter, number of rows per ear, 100-seed weight and seed rate had extremely significant positive correlations with grain yield per plant. Among them, number of grains per row had the most significant effect on yield per plant. Barren tip length had a significant negative correlation with grain yield per plant. Therefore, we concluded that the combinations with more grains per row and shorter barren tip should be selected to achieve high yield of maize.展开更多
In this study, six CIMMYT maize inbred lines and five representative do- mestic maize inbred lines were used as parental lines. By using incomplete diallel cross design, 30 hybrid combinations were developed to analyz...In this study, six CIMMYT maize inbred lines and five representative do- mestic maize inbred lines were used as parental lines. By using incomplete diallel cross design, 30 hybrid combinations were developed to analyze the general com- bining ability (GCA), specific combining ability (SCA) and total combining ability (TCA) of seven panicle traits in six CIMMYT maize inbred lines. The results showed that CIMBL98 and GEMS13 were excellent inbred lines with good compre- hensive performance; CIMBL98 × 340 and GEMS13×Chang 7-2 were superior combinations.展开更多
Ten-maize inbred lines of maize (Zea mays L.) with high-induction rate and proliferation ability of embryonic calli were selected from 70-maize inbred lines by immature embryo culturing. Some of the embryonic calli ...Ten-maize inbred lines of maize (Zea mays L.) with high-induction rate and proliferation ability of embryonic calli were selected from 70-maize inbred lines by immature embryo culturing. Some of the embryonic calli were transferred onto regeneration medium to examine the ability of regeneration, some were transformed via Agrobacterium tumifaciens C58 carrying intron-β-glucuronidase (gus) gene, and GV3301 carrying the green fluorescent protein (gfp) gene to study the susceptibility of different genotypes in maize to A. tumifaciens. All embryonic calli initiated from 10-maize inbred lines were able to regenerate into plantlets, and the regeneration frequencies of inbred lines 6010, 6038, 6015, 6051, and 6060 were 61.11%, 31.94%, 45%, 33.33%, and 56.94%, respectively, which were higher than that of other lines. Analysis of variance indicated that the susceptibility of the various genotypes in maize to A. tumifacien C58 showed a significant difference among each other, and the inbred lines 6010, 6015, 6051, 6050, 6058, 6060, 6069, 6077 were susceptible to A. tumifacien C58, of which frequency of gus expression were over 70%. Expression of GFP was observed in six-inbred lines (6050, 6015, 6051, 6058, 6069, 6077). The inbred lines 6051, 6010, 6015, 6060, and 6050 had the high regeneration and the susceptibility to A. tumifaciens C58; and the inbred lines 6051, 6015, and 6060 had the high regeneration and the susceptibility to Agrobacterium tumifaciens GV3301.展开更多
The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are...The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass signiifcantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyl , and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (Pn) and improved stomatal conductance (Gs) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photo-chemistry efifciency (ФPSI ) and the maximum PSII photochemistry efifciency (Fv/Fm), which largely improved light partition-ing and chlorophyl lfuorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamel ae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which wil greatly help to improve photosynthetic capacity and energy efifciency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capac-ity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars.展开更多
The cell wall composition and structure of the maize stalk directly affects its digestibility and in turn its feed value.Previous studies of stem quality have focused mostly on common maize germplasm,and few studies h...The cell wall composition and structure of the maize stalk directly affects its digestibility and in turn its feed value.Previous studies of stem quality have focused mostly on common maize germplasm,and few studies have focused on high-oil cultivars with high grain and straw quality.Investigation of the genetic basis of cell wall composition and digestibility of maize stalk using high-oil maize is desirable for improving maize forage quality.In the present study,a high-oil inbred line(By804)was crossed as male parent with the maize inbred line B73 to construct a population of 188 recombinant inbred lines(RILs).The phenotypes of six cell-wall-related traits were recorded,and QTL analysis was performed with a genetic map constructed with SNP markers.All traits were significantly correlated with one another and showed high broad-sense heritability.Of 20 QTLs mapped,the QTL associated with each trait explained 10.0%–41.1%of phenotypic variation.Approximately half of the QTL each explained over 10%of the phenotypic variation.These results provide a theoretical basis for improving maize forage quality by marker-assisted selection.展开更多
The amount of molecular marker information has considerable impact on the results of studies of crop germplasm genetic relationships in crop. The number of alleles required to reveal genetic relationship in maize inbr...The amount of molecular marker information has considerable impact on the results of studies of crop germplasm genetic relationships in crop. The number of alleles required to reveal genetic relationship in maize inbred lines is a theoretical issue that needs to be addressed. In this study, 112 pairs of SSR (simple sequence repeat) primers and 97 maize inbred lines were selected to study the relationship between the number of inbred lines and the number of SSR primers and alleles required for a stable cluster. The results showed that the number of SSR primers is not tightly associated with the stability of the cluster analysis results, while an increase in the number of alleles can significantly improve the stability of cluster analysis results. The number of inbred lines (X) is significantly associated with the number of alleles required for stable cluster analysis (Y), and the regression equation is Y- 600.8xe(-15.9/x). This equation can be used to calculate the number of SSR alleles required for a genetic relationship study of maize inbred lines. These results provide a reference for determining of SSR alleles number in genetic relationship analysis of maize inbred line and other crop germplasm.展开更多
Association mapping has emerged as a new tool to elucidate complex quantitative trait loci in maize, but there are few reports about systematic association analysis for the specific SSR markers with agronomic traits o...Association mapping has emerged as a new tool to elucidate complex quantitative trait loci in maize, but there are few reports about systematic association analysis for the specific SSR markers with agronomic traits of interest in China. We investigated the morphological and genetic diversity and population structure for 76 maize recombinant inbred lines, and then association analysis were further performed between 48 simple sequence repeat loci and 17 morphological traits, consisting of nine ear-related traits and eight other traits. The 48 SSR markers were screened out and further classified into two groups including a group of loci in regions harboring reported quantitative trait loci that affect ear shape and a group of markers distributing on the whole genome randomly. The result indicated that the population of recombinant inbred lines was structured, showing five subpopulations. Our association results revealed that there were 82, 59, and 40 significant associations detected by K-test, logistic regression, and both analysis, respectively. When the 17 traits were considered separately, the significant associations between Q-SSRs and E-traits were raised to 27.8%, whereas the other groups of combinations ranged between 2.3 and 6.3%. As the proportion of significant associations is higher among the Q-SSR subset of markers and the subset of traits related to ear shape than those for all of the other combinations, we conclude that this approach is valid for establishing true positive marker-trait relationships. Our results also demonstrated that association mapping could complement and enhance previous QTL information for marker-assisted selection.展开更多
In China, the purity of maize hybrid strain is discomforting to the development of seed industrialization. Finding a new method for reproduction of maize hybrid strain is necessary. In this study, using particle bomba...In China, the purity of maize hybrid strain is discomforting to the development of seed industrialization. Finding a new method for reproduction of maize hybrid strain is necessary. In this study, using particle bombardment, barstar gene was transferred into maize inbred line 18-599 (White), which is an antiviral and high quality maize inbred line. By molecular detection of the anther of transgenic maize, two plants transferred with barstar gene were gained in this study, which are two restorer lines. The two plants showed normal male spike, and lively microspores. But the capacity of the two restorer lines should be studied in the future. The aim of this study is to find a new method of reproduction of maize hybrid strain using engineering restorer lines and engineering sterility lines by gene engineering technology.展开更多
The vacuolar proton-pumping pyrophosphatase gene(VPP)is often used to enhance plant drought tolerance via genetic engineering.In this study,the drought tolerance of four transgenic inbred maize lines overexpressing Zm...The vacuolar proton-pumping pyrophosphatase gene(VPP)is often used to enhance plant drought tolerance via genetic engineering.In this study,the drought tolerance of four transgenic inbred maize lines overexpressing ZmVPP1(PH4CV-T,PH6WC-T,Chang7-2-T,and Zheng58-T)and their transgenic hybrids was evaluated at various stages.Under normal and drought conditions,the height and fresh weight were greater for the four transgenic inbred maize lines than for the wild-type(WT)controls at the germination and seedling stages.Additionally,the transgenic plants exhibited enhanced photosynthetic efficiency at the seedling stage.In irrigated and non-irrigated fields,the four transgenic lines grew normally,but with increased ear weight and yield compared with the WT plants.Moreover,the ear weight and yield of the transgenic hybrids resulting from the PH4CV-T×PH6WC-W and Chang7-2-T×Zheng58-W crosses increased in the non-irrigated field.Our results demonstrated that the growth and drought tolerance of four transgenic inbred maize lines with improved photosynthesis were enhanced by the overexpression of ZmVPP1.Moreover,the Chang7-2 and PH4CV transgenic lines may be useful for future genetic improvements of maize hybrids to increase drought tolerance.展开更多
Genetic diversity is one of the useful tools to select appropriate lines for hybridization. Twenty short</span><span style="font-family:Verdana;">-</span><span style="font-family:Ve...Genetic diversity is one of the useful tools to select appropriate lines for hybridization. Twenty short</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">statured</span><span style="font-family:""> </span><span style="font-family:Verdana;">maize inbred lines were taken for present study</span><span style="font-family:Verdana;">,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which</span><span style="font-family:""><span style="font-family:Verdana;"> were collected from CIMMYT India and Mexico through Plant Breeding Division, Bangladesh Agricultural Research Institute (BARI), Gazipu</span><span style="font-family:Verdana;">r. This experiment was conducted </span></span><span style="font-family:Verdana;">from</span><span style="font-family:Verdana;"> November 2015 to April 2016 t</span><span style="font-family:Verdana;">o identify parental lines to produce single cross short statured</span><span style="font-family:""> </span><span style="font-family:Verdana;">maize hyb</span><span style="font-family:""><span style="font-family:Verdana;">rids. </span><span style="font-family:Verdana;">From th</span></span><span style="font-family:Verdana;">e</span><span style="font-family:Verdana;"> genetic diversity studies</span><span style="font-family:Verdana;">,</span><span style="font-family:""> </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">importance of both additive and non-additive</span><span style="font-family:Verdana;"> gene actions for the expression of yield and yield contributing characters were found. Values of vector I and II revealed that both the vectors had positive values for date of silking, plant height, rows/cob, grains/row and yield. These results indicated that these five characters had highest contribution towards divergence. Based on </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">relative magnitude of D</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> values;20 inbred lines were grouped into five clusters. Seven inbred lines were selected on the basis of genetic diversity and per se performance which will be crossed separately in a half</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">diallel fashion to develop hybrids.展开更多
Two maize inbred lines, the foundation genotype Y478 and its derived line Z58, are widely used to breed novel maize cultivars in China, but little is known about which traits confer Z58 with superior drought tolerance...Two maize inbred lines, the foundation genotype Y478 and its derived line Z58, are widely used to breed novel maize cultivars in China, but little is known about which traits confer Z58 with superior drought tolerance and yield. In the present study, responses in growth traits, photosynthetic parameters, chlorophyll fluorescence and leaf micromorphological characteristics were evaluated in Y478 and Z58 subjected to water-deficit stress induced by PEG 6000. The derived line Z58 showed greater drought tolerance than Y478, which was associated with higher leaf relative water content (RWC), root efficiency, and strong growth recovery. Z58 showed a higher stomatal density and stomatal area under the non-stressed condition;in these traits, both genotypes showed a similar decreasing trend with increased severity of water-deficit stress. In addition, the stomatal size of Y478 declined significantly. These micromorphological differences between the two lines were consistent with changes in physiological parameters, which may contribute to the enhanced capability for growth recovery in Z58. A non-linear response of Fv/Fm to leaf RWC was observed, and Fv/Fm decreased rapidly with a further gradual decline of leaf RWC. The relationship between other chlorophyll fluorescence parameters (photochemical quenching and electron transport rate) and RWC is also discussed.展开更多
To reveal the saddle-type dose effect relationship, we propose a radiation mutagenesis model based on maize nutrition difference resulting from heavy ion ~7Li radiation. Through irradiation mutagenesis, apparent trait...To reveal the saddle-type dose effect relationship, we propose a radiation mutagenesis model based on maize nutrition difference resulting from heavy ion ~7Li radiation. Through irradiation mutagenesis, apparent trait selection, amino acids and fatty acids content determination, and modeling, dynamic evolution from microscopic damage and repair initiation to the final macroscopic biological effects are considered simultaneously. The results show that the steady state nature is independent of evolution time and only relates to different radiation doses.Heavy ion ~7Li radiation could effectively cause maize phenotypic variation and could improve nutritional quality.This model not only gives a good fit to the experimental results on most types of amino acids and fatty acids, but also offers an adequate explanation of the experimental phenomenon underlying the saddle-type bimodal dose effect. By combining experimental results with theoretical analyses, we suggest that the synergy of the stimulus effect and momentum transfer is the main cause of the saddle-type dose effect bimodal curve. This provides an effective strategy for conducting maize germplasm innovation.展开更多
Over the past seven decades, the grain yield of maize(Zea mays L.) has increased continuously in China, mostly due to hybridization innovations, particularly recent genetic improvements in photosynthesis. In order to ...Over the past seven decades, the grain yield of maize(Zea mays L.) has increased continuously in China, mostly due to hybridization innovations, particularly recent genetic improvements in photosynthesis. In order to reveal photosynthetic characters of elite inbred lines in different ears, a field experiment was conducted at the North China Plain of Shandong Province in China. Six parental lines of maize introduced in three eras(the 1960 s, 1980 s, and 2000 s) were investigated diurnal variation of gas exchange, chlorophyll fluorescence, and photosynthetic response characteristic at the grain filling stage. Compared to earlier parental lines, the 2000 s parental lines always had higher net photosynthetic rate(Pn) throughout the day, especially at noon, and a mid-day depression in Pn did not occur in all hybrids parental lines. Moreover, the stomatal conductance(Gs) and water use efficiency(WUE) of the 2000 s’ lines showed higher value than those of the 1960 s’ and 1980 s’ lines. The inbred lines differences in photosynthetic parameters were partly owing to their different quantum carboxylation efficiencies and light synthase activities. Simultaneously, the 2000 s parental lines exhibited lower light and CO2 compensation points, and their higher apparent quantum yield, and carboxylation efficiency. These suggested that the modern parental lines required lower light intensity and less CO2 to maintain a relatively high photosynthetic capacity, substantially increasing leaf physical quality and stress resistance. It provided crucial information of high photo-efficiency and stress-resistance breeding in maize.展开更多
Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize(Zea mays) and affecting crop yield and quality.Resistance of maize to pre-harvest mycot...Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize(Zea mays) and affecting crop yield and quality.Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus and fumonisin produced by Fusarium verticillioides, is a goal in breeding programs that screen for these important traits with the aim of developing resistant commercial hybrids. We conducted two years of field evaluations on 87 inbred lines originating primarily in China and Mexico and not previously screened for resistance.The objectives of our study were to identify resistant germplasm for breeding purposes and to examine possible relationships between resistances to the two mycotoxins. Aflatoxin and fumonisin were present in samples harvested from all lines in both years.Concentrations of total aflatoxin ranged from 52.00 ± 20.00 to 1524.00 ± 396.00 μg kg^(-1),while those of fumonisin ranged from 0.60 ± 0.06 to 124.00 ± 19.50 mg kg^(-1). The inbred lines TUN15, TUN61, TUN37, CY2, and TUN49 showed the lowest aflatoxin accumulation and CN1, GT601, TUN09, TUN61, and MP717 the lowest fumonisin accumulation. TUN61 showed the lowest accumulation of both mycotoxins. This study confirmed previous observations that high levels of aflatoxin can coexist with fumonisin, with 55 maize lines showing a positive correlation coefficient between the concentrations of aflatoxin and fumonisin and 32 lines showing a negative correlation coefficient. These selected lines,particularly TUN61, may provide sources of resistance to mycotoxin contamination in breeding programs. However, the mechanism of resistance in this germplasm remains to be identified. Future research should also address factors that influence the fungus–plant interaction, such as herbivory and environmental stress.展开更多
A pot culture trial was conducted to investigate the changes of the biomass and acid phosphatase (APase) activity in 10 maize lines under low-P stress. P-deficiency significantly decreased the biomass, but induced t...A pot culture trial was conducted to investigate the changes of the biomass and acid phosphatase (APase) activity in 10 maize lines under low-P stress. P-deficiency significantly decreased the biomass, but induced the significant enhancement of the APase activity. Since P-deficiency had smaller effects on the low-P tolerant maize lines compared with P-sensitive lines, it was demonstrated that differences of tolerance to P-deficiency existed among 10 different maize lines. In addition, the relative biomass and APase activity changed during the vegetative stage of development, and there existed a significant correlation between the biomass and APase activity under low-P stress. These results suggest that the biomass and APase activity can be regarded as indicative traits of maize lines for tolerance to low-P stress at seedling stage.展开更多
Maize breeding efforts to generate high yielding and adaptive cultivars have recently been given emphasis by national maize breeding program. In Ethiopia, the maize production system is mainly dominated by subsistence...Maize breeding efforts to generate high yielding and adaptive cultivars have recently been given emphasis by national maize breeding program. In Ethiopia, the maize production system is mainly dominated by subsistence farmers where their production is below average. The objectives of this study were to determine the combining ability between lines and testers, and to evaluate the performance of crosses (hybrids) and parents for grain yield and yield component traits. Twenty-seven inbred lines were generated by crossing nine female lines (L1-L9) and three male testers (T1-T3) using line × tester mating system at International Maize and Wheat Improvement Center (CIMMYT), East African high land maize improvement program. The inbred lines along with parents were evaluated in randomized complete block design with two replications at three locations (Ambo, Kulumsa and Haramaya). Significant differences were observed among genotypes for all ten traits considered. Eight crosses (L1 × T2, L1 × T3, L3 × T3, L8 × T1, L4 × T2, L9 × T1, L2 × T1, and L2 × T2) had higher yield performance compared to other crosses across environments. Significant mean square differences were found across locations for general combining ability (GCA) due to lines for all traits except for number of kernel rows per ear, whereas GCA due to testers were significant only for grain yield, ear length and 1000-seed weight. Significant mean square due to GCA × Loc (both for lines and testers) was found for days to maturity (38.71*), 1000-seed weight (4582.36**) and grain yield (2756777**), while significant SCA × Loc interaction was found for all traits except number of kernel rows per ear (1.07), ear length (0.79) and ear diameter (0.12), suggesting that the importance of additive and non-additive gene effects in controlling these characters.展开更多
On the basis of previous work, the study of screening marker bands of maize ( Zea mays L. )isozyme was carried out. 11 multiplasmic lines were used as experimental materials. The different tissues at different develop...On the basis of previous work, the study of screening marker bands of maize ( Zea mays L. )isozyme was carried out. 11 multiplasmic lines were used as experimental materials. The different tissues at different development stages were taken for each material. DPAGE system and double vertical gel slabs were used. The experimental results are as follows: (1) POD: A total of 20 isozymic bands. (Fli)Mo17 and (su1)Mo17 possessed the POD1 and POD3, while POD7 was absent. (sh2)MoI7-POD15 and POD16. (bt1)Mo17-POD1, POD11. (Pop)Mo17-POD15. (wx)Mo17 did not possess the POD3, 4, 5, 6, 8, 15, 16. The other lines possessed different POD. (2) EST: A total of 18 isozymic bands. (Fli)Mo17 possessed the EST 2, 17,but EST15 was absent. (su1)Mo17-EST13. (bt1)Mo17-EST6, 12, 14. (Pop)Mo17 possessed the EST12, but EST2, 8, 11, 13, 14 were absent. For the other multiplasmic lines, some possessed this EST, some possessed other EST. (3)According to the above data, some specific isozymic bands can be used as biochemical markers to distinguish these multiplasmic lines from each other.展开更多
Strong seedlings are essential for high yield.To explore the foundation of strong seedlings,we investigated various factors influencing the conversion and distribution of seed storage reserves during seedling establis...Strong seedlings are essential for high yield.To explore the foundation of strong seedlings,we investigated various factors influencing the conversion and distribution of seed storage reserves during seedling establishment in maize inbred lines.Three maize inbred lines were used to explore the effects of seed size,seed vigor,illumination duration,temperature,water content,and salt concentration of the seedling medium on the utilization of seed storage reserves during seedling establishment.The results showed that the conversion rate of small seeds was 3.69 to 17.71%higher than that of large seeds.Moreover,prolonged illumination time was conducive to the formation of strong seedlings.However,low temperature,drought stress and salt stress reduced the conversion rate of seed storage reserves and increased the root/shoot ratio.These results could be used to guide field management during seedling emergence and develop improved germplasm with a high conversion rate of seed storage reserves.展开更多
文摘[ Objective ] The paper was to establish the near isogenic lines of Huangzaosi maize with resistance against maize head smut, and to provide basis for its wide application in breeding and production. [Method] Combing with hybrid, backcress and self-cross method, as well as molecular markers, Huangzaosi maize was successfully introduced with head smut resistance, and its near isogenic lines were studied. The characteristics of resistant and susceptible variation and the changes of combining ability of near isogenic lines after backcrossing breeding were observed. [ Result ] The incidence rate of Huangzansi maize in control was 46% ; the incidence rates of the selected 24 near isogenic lines of resistant Huangzaosi were all lower than 10%, and the selected rate was 92.6% ; the combining ability of most near isogenic lines of resistant Huangzaosi maize had no significant difference with that of H^i maize in control; the yields of hybrids prepared by several inbred lines such as M135 and M140 were outstanding, which exceeded the control Zhengdan 958, showing a higher combining ability. [ Conclusion] The phenotype and combining ability of near isngenic lines of Huangzaosi maize with resistance against maize head smut obtained in the test were very close to Huan- gzaosi, and its resistance against maize head smut was greatly increased, thus solving the problems of Huangzaesi without resistance against maize head smut.
基金Supported by"Study on New Method and Technology of Maize Breeding"of the 12th Five-Year Plan in Chongqing(cstc 2012 gg C 80003)"Study on Maize DH Breeding Technology and New Variety Breeding"of the 12th Five-Year Plan of National Science and Technology Plan Project in Rural Areas(2012 AA 101203-2)+2 种基金"Basic Work of Special Agricultural Science and Technology"(cstc 2013 yykfc 80002)"National Maize Industry Technology System"(CARS-02-74)Fundamental Research Project"Genetic differences DH maize lines~~
文摘The general combining ability(GCA), special combining ability(SCA) and genetic parameter of ten characters of 22 maize inbred lines including plant height and ear height were analyzed using 10×12 through incomplete diallel cross(NC Ⅱ).The results showed that:(1) Among the 22 maize inbred lines, the yield GCAs of11 HN 097, 11 HN 099, 11 HN 105 and 11 HN 110 were high, which were elite inbred lines to collocate hybridized combinations with strong heterosis. The yield of11 HN110 × 11 HN097, 11 HN110 × 11 HN105, 11 HN112 × 11 HN 097 and 11 HN 106 × 11 HN 104 were in the first four place. The yielding abilities, adaptabilities and yielding stabilities of the four combinations can be further identified by experiment. The heredities of the ten characters were mainly controlled by additive gene effect whereas the influence of non-addictive gene effect was small. The narrow heritabilities of plant height, ear height, ear rows, ear length, kernels per row,100-grain weight and seed-producing percentage were more than 50%. The variances were mainly caused by heredity and early-generation selection should be conducted. The narrow heritabilities of ear diameter, bare tip length and yield was low, which should not be selected in early-generation.
文摘The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The results showed that the line F6 had the highest general combining ability (GCA) for yield, followed by F7, M3, M4 and M8. All of the five lines have great potential in maize breeding. The cross combination M3xF10 had the highest specific combining ability (SCA) for yield, showing strong heterosis. Heritability analysis of ear characteristics showed that GCA variance was higher than SCA variance in ear diameter, number of rows per ear and seed rate, and they were mainly controlled by the additive gene effect, indicating that that the selections for these traits are effective at early generations. The other three traits had lower SCA, for which the selections should be carried out at late generations. The correlation analysis revealed that ear length, number of grains per row, ear diameter, number of rows per ear, 100-seed weight and seed rate had extremely significant positive correlations with grain yield per plant. Among them, number of grains per row had the most significant effect on yield per plant. Barren tip length had a significant negative correlation with grain yield per plant. Therefore, we concluded that the combinations with more grains per row and shorter barren tip should be selected to achieve high yield of maize.
基金Supported by 2015 Basic Research Operating Expenses Program of Chongqing Municipality‘Excavation and Appraisal of High-Se Maize Germplasm Resources’Key Project of Development and Application of Chongqing Municipality(cstc2014yykf B80014)~~
文摘In this study, six CIMMYT maize inbred lines and five representative do- mestic maize inbred lines were used as parental lines. By using incomplete diallel cross design, 30 hybrid combinations were developed to analyze the general com- bining ability (GCA), specific combining ability (SCA) and total combining ability (TCA) of seven panicle traits in six CIMMYT maize inbred lines. The results showed that CIMBL98 and GEMS13 were excellent inbred lines with good compre- hensive performance; CIMBL98 × 340 and GEMS13×Chang 7-2 were superior combinations.
基金This work was supported by the National Natural Sciences Foundation of China (No. 30370889)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0453)+3 种基金Beijing Agricultural Innovative Platform-Beijing Natural Science Fund Programthe National High-tech R&D Program of China (No. 2006 AA100103)the National Key Technolo-gies R&D Program (No. 2006 BAD01A03)the Program of the National Ministry of Agriculture (No. 2003-Q03)
文摘Ten-maize inbred lines of maize (Zea mays L.) with high-induction rate and proliferation ability of embryonic calli were selected from 70-maize inbred lines by immature embryo culturing. Some of the embryonic calli were transferred onto regeneration medium to examine the ability of regeneration, some were transformed via Agrobacterium tumifaciens C58 carrying intron-β-glucuronidase (gus) gene, and GV3301 carrying the green fluorescent protein (gfp) gene to study the susceptibility of different genotypes in maize to A. tumifaciens. All embryonic calli initiated from 10-maize inbred lines were able to regenerate into plantlets, and the regeneration frequencies of inbred lines 6010, 6038, 6015, 6051, and 6060 were 61.11%, 31.94%, 45%, 33.33%, and 56.94%, respectively, which were higher than that of other lines. Analysis of variance indicated that the susceptibility of the various genotypes in maize to A. tumifacien C58 showed a significant difference among each other, and the inbred lines 6010, 6015, 6051, 6050, 6058, 6060, 6069, 6077 were susceptible to A. tumifacien C58, of which frequency of gus expression were over 70%. Expression of GFP was observed in six-inbred lines (6050, 6015, 6051, 6058, 6069, 6077). The inbred lines 6051, 6010, 6015, 6060, and 6050 had the high regeneration and the susceptibility to A. tumifaciens C58; and the inbred lines 6051, 6015, and 6060 had the high regeneration and the susceptibility to Agrobacterium tumifaciens GV3301.
基金financial support from the National Natural Science Foundation of China (31401342)the National Basic Research Program of China (973 Program, 2015CB150401)
文摘The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass signiifcantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyl , and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (Pn) and improved stomatal conductance (Gs) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photo-chemistry efifciency (ФPSI ) and the maximum PSII photochemistry efifciency (Fv/Fm), which largely improved light partition-ing and chlorophyl lfuorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamel ae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which wil greatly help to improve photosynthetic capacity and energy efifciency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capac-ity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars.
基金supported by the National Key Research and Development Program of China(2017YFD0101201 and2016YFD0101002)the Chinese Academy of Agricultural Sciences through the Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2017-TRICAAS)National Engineering Laboratory for Crop Molecular Breeding
文摘The cell wall composition and structure of the maize stalk directly affects its digestibility and in turn its feed value.Previous studies of stem quality have focused mostly on common maize germplasm,and few studies have focused on high-oil cultivars with high grain and straw quality.Investigation of the genetic basis of cell wall composition and digestibility of maize stalk using high-oil maize is desirable for improving maize forage quality.In the present study,a high-oil inbred line(By804)was crossed as male parent with the maize inbred line B73 to construct a population of 188 recombinant inbred lines(RILs).The phenotypes of six cell-wall-related traits were recorded,and QTL analysis was performed with a genetic map constructed with SNP markers.All traits were significantly correlated with one another and showed high broad-sense heritability.Of 20 QTLs mapped,the QTL associated with each trait explained 10.0%–41.1%of phenotypic variation.Approximately half of the QTL each explained over 10%of the phenotypic variation.These results provide a theoretical basis for improving maize forage quality by marker-assisted selection.
基金supported by the Natural Science Foundation of Shandong Province,China (Y2007D52)the Improved Variety Project of Shandong Province (2008 No.6)
文摘The amount of molecular marker information has considerable impact on the results of studies of crop germplasm genetic relationships in crop. The number of alleles required to reveal genetic relationship in maize inbred lines is a theoretical issue that needs to be addressed. In this study, 112 pairs of SSR (simple sequence repeat) primers and 97 maize inbred lines were selected to study the relationship between the number of inbred lines and the number of SSR primers and alleles required for a stable cluster. The results showed that the number of SSR primers is not tightly associated with the stability of the cluster analysis results, while an increase in the number of alleles can significantly improve the stability of cluster analysis results. The number of inbred lines (X) is significantly associated with the number of alleles required for stable cluster analysis (Y), and the regression equation is Y- 600.8xe(-15.9/x). This equation can be used to calculate the number of SSR alleles required for a genetic relationship study of maize inbred lines. These results provide a reference for determining of SSR alleles number in genetic relationship analysis of maize inbred line and other crop germplasm.
基金supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan period of Hebei Province (06220108D-2)
文摘Association mapping has emerged as a new tool to elucidate complex quantitative trait loci in maize, but there are few reports about systematic association analysis for the specific SSR markers with agronomic traits of interest in China. We investigated the morphological and genetic diversity and population structure for 76 maize recombinant inbred lines, and then association analysis were further performed between 48 simple sequence repeat loci and 17 morphological traits, consisting of nine ear-related traits and eight other traits. The 48 SSR markers were screened out and further classified into two groups including a group of loci in regions harboring reported quantitative trait loci that affect ear shape and a group of markers distributing on the whole genome randomly. The result indicated that the population of recombinant inbred lines was structured, showing five subpopulations. Our association results revealed that there were 82, 59, and 40 significant associations detected by K-test, logistic regression, and both analysis, respectively. When the 17 traits were considered separately, the significant associations between Q-SSRs and E-traits were raised to 27.8%, whereas the other groups of combinations ranged between 2.3 and 6.3%. As the proportion of significant associations is higher among the Q-SSR subset of markers and the subset of traits related to ear shape than those for all of the other combinations, we conclude that this approach is valid for establishing true positive marker-trait relationships. Our results also demonstrated that association mapping could complement and enhance previous QTL information for marker-assisted selection.
文摘In China, the purity of maize hybrid strain is discomforting to the development of seed industrialization. Finding a new method for reproduction of maize hybrid strain is necessary. In this study, using particle bombardment, barstar gene was transferred into maize inbred line 18-599 (White), which is an antiviral and high quality maize inbred line. By molecular detection of the anther of transgenic maize, two plants transferred with barstar gene were gained in this study, which are two restorer lines. The two plants showed normal male spike, and lively microspores. But the capacity of the two restorer lines should be studied in the future. The aim of this study is to find a new method of reproduction of maize hybrid strain using engineering restorer lines and engineering sterility lines by gene engineering technology.
基金This study was supported by the National Key Project for Research on Transgenic Plants,China(2016Zx08003-O04)the Independent Innovation Project of Henan Academy of Agricultural Sciences,China(2060302).
文摘The vacuolar proton-pumping pyrophosphatase gene(VPP)is often used to enhance plant drought tolerance via genetic engineering.In this study,the drought tolerance of four transgenic inbred maize lines overexpressing ZmVPP1(PH4CV-T,PH6WC-T,Chang7-2-T,and Zheng58-T)and their transgenic hybrids was evaluated at various stages.Under normal and drought conditions,the height and fresh weight were greater for the four transgenic inbred maize lines than for the wild-type(WT)controls at the germination and seedling stages.Additionally,the transgenic plants exhibited enhanced photosynthetic efficiency at the seedling stage.In irrigated and non-irrigated fields,the four transgenic lines grew normally,but with increased ear weight and yield compared with the WT plants.Moreover,the ear weight and yield of the transgenic hybrids resulting from the PH4CV-T×PH6WC-W and Chang7-2-T×Zheng58-W crosses increased in the non-irrigated field.Our results demonstrated that the growth and drought tolerance of four transgenic inbred maize lines with improved photosynthesis were enhanced by the overexpression of ZmVPP1.Moreover,the Chang7-2 and PH4CV transgenic lines may be useful for future genetic improvements of maize hybrids to increase drought tolerance.
文摘Genetic diversity is one of the useful tools to select appropriate lines for hybridization. Twenty short</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">statured</span><span style="font-family:""> </span><span style="font-family:Verdana;">maize inbred lines were taken for present study</span><span style="font-family:Verdana;">,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which</span><span style="font-family:""><span style="font-family:Verdana;"> were collected from CIMMYT India and Mexico through Plant Breeding Division, Bangladesh Agricultural Research Institute (BARI), Gazipu</span><span style="font-family:Verdana;">r. This experiment was conducted </span></span><span style="font-family:Verdana;">from</span><span style="font-family:Verdana;"> November 2015 to April 2016 t</span><span style="font-family:Verdana;">o identify parental lines to produce single cross short statured</span><span style="font-family:""> </span><span style="font-family:Verdana;">maize hyb</span><span style="font-family:""><span style="font-family:Verdana;">rids. </span><span style="font-family:Verdana;">From th</span></span><span style="font-family:Verdana;">e</span><span style="font-family:Verdana;"> genetic diversity studies</span><span style="font-family:Verdana;">,</span><span style="font-family:""> </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">importance of both additive and non-additive</span><span style="font-family:Verdana;"> gene actions for the expression of yield and yield contributing characters were found. Values of vector I and II revealed that both the vectors had positive values for date of silking, plant height, rows/cob, grains/row and yield. These results indicated that these five characters had highest contribution towards divergence. Based on </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">relative magnitude of D</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> values;20 inbred lines were grouped into five clusters. Seven inbred lines were selected on the basis of genetic diversity and per se performance which will be crossed separately in a half</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">diallel fashion to develop hybrids.
文摘Two maize inbred lines, the foundation genotype Y478 and its derived line Z58, are widely used to breed novel maize cultivars in China, but little is known about which traits confer Z58 with superior drought tolerance and yield. In the present study, responses in growth traits, photosynthetic parameters, chlorophyll fluorescence and leaf micromorphological characteristics were evaluated in Y478 and Z58 subjected to water-deficit stress induced by PEG 6000. The derived line Z58 showed greater drought tolerance than Y478, which was associated with higher leaf relative water content (RWC), root efficiency, and strong growth recovery. Z58 showed a higher stomatal density and stomatal area under the non-stressed condition;in these traits, both genotypes showed a similar decreasing trend with increased severity of water-deficit stress. In addition, the stomatal size of Y478 declined significantly. These micromorphological differences between the two lines were consistent with changes in physiological parameters, which may contribute to the enhanced capability for growth recovery in Z58. A non-linear response of Fv/Fm to leaf RWC was observed, and Fv/Fm decreased rapidly with a further gradual decline of leaf RWC. The relationship between other chlorophyll fluorescence parameters (photochemical quenching and electron transport rate) and RWC is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.11735006the Hebei Natural Science Foundation of under Grant No.B2014209314the Hebei Science and Technology Research Project of Higher Education under Grant No.ZD2017023
文摘To reveal the saddle-type dose effect relationship, we propose a radiation mutagenesis model based on maize nutrition difference resulting from heavy ion ~7Li radiation. Through irradiation mutagenesis, apparent trait selection, amino acids and fatty acids content determination, and modeling, dynamic evolution from microscopic damage and repair initiation to the final macroscopic biological effects are considered simultaneously. The results show that the steady state nature is independent of evolution time and only relates to different radiation doses.Heavy ion ~7Li radiation could effectively cause maize phenotypic variation and could improve nutritional quality.This model not only gives a good fit to the experimental results on most types of amino acids and fatty acids, but also offers an adequate explanation of the experimental phenomenon underlying the saddle-type bimodal dose effect. By combining experimental results with theoretical analyses, we suggest that the synergy of the stimulus effect and momentum transfer is the main cause of the saddle-type dose effect bimodal curve. This provides an effective strategy for conducting maize germplasm innovation.
基金funded by the National Key Research and Development Program of China (2016YFD0300103)the earmarked fund for China Agriculture Research System (CARS-02-12)
文摘Over the past seven decades, the grain yield of maize(Zea mays L.) has increased continuously in China, mostly due to hybridization innovations, particularly recent genetic improvements in photosynthesis. In order to reveal photosynthetic characters of elite inbred lines in different ears, a field experiment was conducted at the North China Plain of Shandong Province in China. Six parental lines of maize introduced in three eras(the 1960 s, 1980 s, and 2000 s) were investigated diurnal variation of gas exchange, chlorophyll fluorescence, and photosynthetic response characteristic at the grain filling stage. Compared to earlier parental lines, the 2000 s parental lines always had higher net photosynthetic rate(Pn) throughout the day, especially at noon, and a mid-day depression in Pn did not occur in all hybrids parental lines. Moreover, the stomatal conductance(Gs) and water use efficiency(WUE) of the 2000 s’ lines showed higher value than those of the 1960 s’ and 1980 s’ lines. The inbred lines differences in photosynthetic parameters were partly owing to their different quantum carboxylation efficiencies and light synthase activities. Simultaneously, the 2000 s parental lines exhibited lower light and CO2 compensation points, and their higher apparent quantum yield, and carboxylation efficiency. These suggested that the modern parental lines required lower light intensity and less CO2 to maintain a relatively high photosynthetic capacity, substantially increasing leaf physical quality and stress resistance. It provided crucial information of high photo-efficiency and stress-resistance breeding in maize.
基金partially supported by the U.S.Department of Agriculture-Agricultural Research Service(USDA-ARS)the Georgia Agricultural Commodity Commission for Corn+1 种基金the National Corn Growers AssociationAMCOE(Aflatoxin Mitigation Center of Excellence)
文摘Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize(Zea mays) and affecting crop yield and quality.Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus and fumonisin produced by Fusarium verticillioides, is a goal in breeding programs that screen for these important traits with the aim of developing resistant commercial hybrids. We conducted two years of field evaluations on 87 inbred lines originating primarily in China and Mexico and not previously screened for resistance.The objectives of our study were to identify resistant germplasm for breeding purposes and to examine possible relationships between resistances to the two mycotoxins. Aflatoxin and fumonisin were present in samples harvested from all lines in both years.Concentrations of total aflatoxin ranged from 52.00 ± 20.00 to 1524.00 ± 396.00 μg kg^(-1),while those of fumonisin ranged from 0.60 ± 0.06 to 124.00 ± 19.50 mg kg^(-1). The inbred lines TUN15, TUN61, TUN37, CY2, and TUN49 showed the lowest aflatoxin accumulation and CN1, GT601, TUN09, TUN61, and MP717 the lowest fumonisin accumulation. TUN61 showed the lowest accumulation of both mycotoxins. This study confirmed previous observations that high levels of aflatoxin can coexist with fumonisin, with 55 maize lines showing a positive correlation coefficient between the concentrations of aflatoxin and fumonisin and 32 lines showing a negative correlation coefficient. These selected lines,particularly TUN61, may provide sources of resistance to mycotoxin contamination in breeding programs. However, the mechanism of resistance in this germplasm remains to be identified. Future research should also address factors that influence the fungus–plant interaction, such as herbivory and environmental stress.
基金Scientific Research Project of Chongqing Educational Commission (KJ051301)
文摘A pot culture trial was conducted to investigate the changes of the biomass and acid phosphatase (APase) activity in 10 maize lines under low-P stress. P-deficiency significantly decreased the biomass, but induced the significant enhancement of the APase activity. Since P-deficiency had smaller effects on the low-P tolerant maize lines compared with P-sensitive lines, it was demonstrated that differences of tolerance to P-deficiency existed among 10 different maize lines. In addition, the relative biomass and APase activity changed during the vegetative stage of development, and there existed a significant correlation between the biomass and APase activity under low-P stress. These results suggest that the biomass and APase activity can be regarded as indicative traits of maize lines for tolerance to low-P stress at seedling stage.
文摘Maize breeding efforts to generate high yielding and adaptive cultivars have recently been given emphasis by national maize breeding program. In Ethiopia, the maize production system is mainly dominated by subsistence farmers where their production is below average. The objectives of this study were to determine the combining ability between lines and testers, and to evaluate the performance of crosses (hybrids) and parents for grain yield and yield component traits. Twenty-seven inbred lines were generated by crossing nine female lines (L1-L9) and three male testers (T1-T3) using line × tester mating system at International Maize and Wheat Improvement Center (CIMMYT), East African high land maize improvement program. The inbred lines along with parents were evaluated in randomized complete block design with two replications at three locations (Ambo, Kulumsa and Haramaya). Significant differences were observed among genotypes for all ten traits considered. Eight crosses (L1 × T2, L1 × T3, L3 × T3, L8 × T1, L4 × T2, L9 × T1, L2 × T1, and L2 × T2) had higher yield performance compared to other crosses across environments. Significant mean square differences were found across locations for general combining ability (GCA) due to lines for all traits except for number of kernel rows per ear, whereas GCA due to testers were significant only for grain yield, ear length and 1000-seed weight. Significant mean square due to GCA × Loc (both for lines and testers) was found for days to maturity (38.71*), 1000-seed weight (4582.36**) and grain yield (2756777**), while significant SCA × Loc interaction was found for all traits except number of kernel rows per ear (1.07), ear length (0.79) and ear diameter (0.12), suggesting that the importance of additive and non-additive gene effects in controlling these characters.
文摘On the basis of previous work, the study of screening marker bands of maize ( Zea mays L. )isozyme was carried out. 11 multiplasmic lines were used as experimental materials. The different tissues at different development stages were taken for each material. DPAGE system and double vertical gel slabs were used. The experimental results are as follows: (1) POD: A total of 20 isozymic bands. (Fli)Mo17 and (su1)Mo17 possessed the POD1 and POD3, while POD7 was absent. (sh2)MoI7-POD15 and POD16. (bt1)Mo17-POD1, POD11. (Pop)Mo17-POD15. (wx)Mo17 did not possess the POD3, 4, 5, 6, 8, 15, 16. The other lines possessed different POD. (2) EST: A total of 18 isozymic bands. (Fli)Mo17 possessed the EST 2, 17,but EST15 was absent. (su1)Mo17-EST13. (bt1)Mo17-EST6, 12, 14. (Pop)Mo17 possessed the EST12, but EST2, 8, 11, 13, 14 were absent. For the other multiplasmic lines, some possessed this EST, some possessed other EST. (3)According to the above data, some specific isozymic bands can be used as biochemical markers to distinguish these multiplasmic lines from each other.
基金supported by the National Key Research and Development Program of China(2018YFD0100900)the Special Fund of Agricultural Significant Application Technique Innovation of Shandong Province,China(SDAIT-02-02)the Maize Improved Seed Project in Shandong Province,China(2019LZGC002-1)。
文摘Strong seedlings are essential for high yield.To explore the foundation of strong seedlings,we investigated various factors influencing the conversion and distribution of seed storage reserves during seedling establishment in maize inbred lines.Three maize inbred lines were used to explore the effects of seed size,seed vigor,illumination duration,temperature,water content,and salt concentration of the seedling medium on the utilization of seed storage reserves during seedling establishment.The results showed that the conversion rate of small seeds was 3.69 to 17.71%higher than that of large seeds.Moreover,prolonged illumination time was conducive to the formation of strong seedlings.However,low temperature,drought stress and salt stress reduced the conversion rate of seed storage reserves and increased the root/shoot ratio.These results could be used to guide field management during seedling emergence and develop improved germplasm with a high conversion rate of seed storage reserves.