期刊文献+
共找到3,970篇文章
< 1 2 199 >
每页显示 20 50 100
Studies on the Root Characteristics of Maize Varieties of Different Eras 被引量:9
1
作者 ZHANG Feng-lu NIU Xing-kui +4 位作者 ZHANG Yi-ming XIE Rui-zhi LIU Xin LI Shao-kun GAO Shi-ju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期426-435,共10页
Experiment was conducted at the Gongzhuling Experimental Station of Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Jilin Province, China, during 2009-2010. Six representative varieties of maize ... Experiment was conducted at the Gongzhuling Experimental Station of Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Jilin Province, China, during 2009-2010. Six representative varieties of maize (Baihe in the 1950s, Jidan 101 in the 1960s, Zhongdan 2 in the 1970s, Yedan 13 in the 1980s, Zhengdan 958 in the 1990s, and Xianyu 335 in the 2000s) were each planted under two different densities (52 500 and 82 500 plants ha-~) and two different nitrogen application levels (150 and 300 kg ha-l). Root characteristics and distribution among soil layers were studied by the field root digging method. The results showed that root mass increased with the process of the growth and development of the plant, and it peaked at kernel filling stage, and decreased at maturity due to the root senesces. Root mass of different maize varieties from the 1950s to 1980s had a trend of increase, while it decreased for the modern varieties. Root length and root surface areas had the similar changing trend. The study suggested that early maize varieties may have root redundancy, and reducing root redundancy may be a direction for variety improvement for high yield. Root characteristics were affected by nitrogen application level and density; modern varieties were more suitable for higher fertilizer application level and density conditions. Root characteristics distribution among soil layers decreased by an exponent equation, but the regression coefficients of different varieties were different. Though the root length density (RLD) of every soil layer of different varieties also decreased by an exponent equation, there were large variations of RLD in every part of a layer. 展开更多
关键词 maize root characteristics root distribution varieties of different eras DENSITY FERTILITY
下载PDF
Identification of quantitative trait loci and epistasis for root characteristics and root exudations in maize (Zea mays L.) under deficient phosphorus
2
作者 陈俊意 《Journal of Chongqing University》 CAS 2010年第2期105-116,共12页
The phosphorus uptake (PU) in above-ground parts of plant,root characteristics and root exudations as well as the quantitative trait loci (QTLs) associated with these characteristics were determined for a F2:3 populat... The phosphorus uptake (PU) in above-ground parts of plant,root characteristics and root exudations as well as the quantitative trait loci (QTLs) associated with these characteristics were determined for a F2:3 population derived from the cross of two contrasting maize (Zea mays L.) genotypes,082 and Ye107.A total of 241 F2:3 families were evaluated in replicated trials under deficient phosphorus conditions in 2007 at two sites (Kaixian County and Southwest University,Chongqing,P.R.China).The results show pleiotropy and close linkage among QTLs.Four common regions in different environments were in bnlg100bnlg1268b (bins 1.02) for QTL of H+,bnlg1268a-umc1290a (bins 1.09) for QTL of AP (acid phosphatase activity),dupssr15-P1M7/a (bins 6.06) for QTLs of PU (phosphorus uptake) and RW (root weight),and P1M3/d-P1M3/g (bins9.04) for QTLs of PU and AP.These QTLs are non-environment or minor QTLs × environment.By epistatic analysis,three main QTLs and eighteen QTLs × QTLs interactions were detected for the seven measured characteristics.These QTLs may affect trait expression by epistatic interaction with the other loci,and make a substantial contribution to phosphorus utilization efficiency,which should be considered when breeding maize varieties with high P efficiency.Two regions were detected in dupssr15-P1M7/a (bins 6.06) for QTL of RW and P1M3/d-P1M3/g (bins 9.04) for QTL of PU and AP.They were detected in two different environments and by two methods of QTL analysis,which were useful for marker-assisted selection. 展开更多
关键词 玉米 根特征 根渗出 量的特点 loci 分析 EPISTASIS
下载PDF
Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO_(3)^(–) and NH_(4)^(+) supply
3
作者 Peng Wang Lan Yang +4 位作者 Xichao Sun Wenjun Shi Rui Dong Yuanhua Wu Guohua Mi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1048-1060,共13页
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti... A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency. 展开更多
关键词 maize NO_(3)^(–)/NH_(4)^(+)ratio lateral root elongation N assimilation indole-3-acetic acid
下载PDF
Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth 被引量:2
4
作者 CHEN Zhe REN Wei +7 位作者 YI Xia LI Qiang CAI Hong-guang Farhan ALI YUAN Li-xing MI Guo-hua PAN Qing-chun CHEN Fan-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期235-250,共16页
Nitrogen(N)is unevenly distributed throughout the soil and plant roots proliferate in N-rich soil patches.However,the relationship between the root response to localized N supply and maize N uptake efficiency among di... Nitrogen(N)is unevenly distributed throughout the soil and plant roots proliferate in N-rich soil patches.However,the relationship between the root response to localized N supply and maize N uptake efficiency among different genotypes is unclear.In this study,four maize varieties were evaluated to explore genotypic differences in the root response to local N application in relation to N uptake.A split-root system was established for hydroponically-grown plants and two methods of local N application(local banding and local dotting)were examined in the field.Genotypic differences in the root length response to N were highly correlated between the hydroponic and field conditions(r>0.99).Genotypes showing high response to N,ZD958,XY335 and XF32D22,showed 50‒63%longer lateral root length and 36‒53%greater root biomass in N-rich regions under hydroponic conditions,while the LY13 genotype did not respond to N.Under field conditions,the root length of the high-response genotypes was found to increase by 66‒75%at 40‒60 cm soil depth,while LY13 showed smaller changes in root length.In addition,local N application increased N uptake at the post-silking stage by 16‒88%in the high-response genotypes and increased the grain yield of ZD958 by 10‒12%.Moreover,yield was positively correlated with root length at 40‒60 cm soil depth(r=0.39).We conclude that local fertilization should be used for high-response genotypes,which can be rapidly identified at the seedling stage,and selection for“local-N responsive roots”can be a promising trait in maize breeding for high nitrogen uptake efficiency. 展开更多
关键词 genotypic difference local nitrogen maize nitrogen efficient root
下载PDF
Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize 被引量:1
5
作者 SHA Xiao-qian GUAN Hong-hui +10 位作者 ZHOU Yu-qian SU Er-hu GUO Jian LI Yong-xiang ZHANG Deng-feng LIU Xu-yang HE Guan-hua LI Yu WANG Tian-yu ZOU Hua-wen LI Chun-hui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3394-3407,共14页
The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship bet... The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood. In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments. We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield. Using a genome-wide association study(GWAS)coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT. Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture. Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication-and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement. Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize. This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture. 展开更多
关键词 maize root aboveground agronomic traits GWAS candidate genes
下载PDF
Increase in root density induced by coronatine improves maize drought resistance in North China 被引量:1
6
作者 Yuling Guo Guanmin Huang +6 位作者 Qing Guo Chuanxi Peng Yingru Liu Mingcai Zhang Zhaohu Li Yuyi Zhou Liusheng Duan 《The Crop Journal》 SCIE CSCD 2023年第1期278-290,共13页
Drought stress caused by insufficient irrigation or precipitation impairs agricultural production worldwide.In this study,a two-year field experiment was conducted to investigate the effect of coronatine(COR),a functi... Drought stress caused by insufficient irrigation or precipitation impairs agricultural production worldwide.In this study,a two-year field experiment was conducted to investigate the effect of coronatine(COR),a functional analog of jasmonic acid(JA),on maize drought resistance.The experiment included two water treatments(rainfed and irrigation),four COR concentrations(mock,0μmol L^(-1);A1,0.1μmol L^(-1);A2,1μmol L^(-1);A3,10μmol L^(-1))and two maize genotypes(Fumin 985(FM985),a drought-resistant cultivar and Xianyu 335(XY335),a drought-sensitive cultivar).Spraying 1μmol L^(-1)COR at seedling stage increased surface root density and size,including root dry matter by 12.6%,projected root area by 19.0%,average root density by 51.9%,and thus root bleeding sap by 28.2%under drought conditions.COR application also increased leaf area and SPAD values,a result attributed to improvement of the root system and increases in abscisic acid(ABA),JA,and salicylic acid(SA)contents.The improvement of leaves and roots laid the foundation for increasing plant height and dry matter accumulation.COR application reduced anthesis and silking interval,increasing kernel number per ear.COR treatment at 1μmol L^(-1)increased the yield of XY335 and FM985 by 7.9%and 11.0%,respectively.Correlation and path analysis showed that grain yields were correlated with root dry weight and projected root area,increasing maize drought resistance mainly via leaf area index and dry matter accumulation.Overall,COR increased maize drought resistance mainly by increasing root dry weight and root area,with 1μmol L-^(-1)COR as an optimal concentration. 展开更多
关键词 maize Drought resistance CORONATINE root development Grain yields
下载PDF
Better tillage selection before ridge–furrow film mulch can facilitate root proliferation, and increase nitrogen accumulation,translocation and grain yield of maize in a semiarid area
7
作者 ZHANG Miao-miao DANG Peng-fei +2 位作者 LIYu-ze QIN Xiao-liang Kadambot H.M.SIDDIQUE 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1658-1670,共13页
Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage... Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage method for plastic film mulch systems. We conducted a two-year field experiment to explore the impact of three tillage treatments-rotary tillage before ridge–furrow plastic film mulch(MR), no-tillage before ridge–furrow plastic film mulch(MZ), and plow tillage before ridge–furrow plastic film mulch(MP)-on soil total nitrogen, available nitrogen, root stratification structure,nitrogen transfer and utilization, and maize yield. The results showed that MP had better soil quality than either MR or MZ over 2019 and 2020, with higher nitrate-nitrogen and total nitrogen in the 0–40 cm soil layer. MP improved the soil physicochemical properties more than the other treatments, producing significantly higher root numbers and root biomass for the aerial and underground nodal roots than MR and MZ. At harvest, MP had the highest root biomass density,root length density, and root surface area density in the different soil layers(0–20, 20–40, and 0–40 cm). Significant correlations occurred between root biomass and aboveground nitrogen accumulation during maize growth. During grain filling, MP had the greatest nitrogen transfer amount, significantly increasing root and aboveground nitrogen transfer by 19.63–45.82% and 11.15–24.56%, respectively, relative to the other treatments. MP significantly produced 1.36–26.73%higher grain yields and a higher grain crude protein content at harvest than MR and MZ. MP also had higher values for the nitrogen harvest index, nitrogen uptake efficiency, and partial factor productivity of nitrogen fertilizer than MR and MZ.In conclusion, plow tillage combined with a ridge–furrow plastic film mulch system facilitated maize root development and improved nitrogen utilization, thereby increasing maize yield more than the other treatments. 展开更多
关键词 maize TILLAGE plastic film mulch root nitrogen transfer
下载PDF
Occurrence Characteristics and Prevention and Control Measures of Spodoptera frugiperda in Maize
8
作者 Liping DONG Chunming LIU 《Plant Diseases and Pests》 CAS 2023年第3期8-9,共2页
Based on practical work experience,this paper analyzed the occurrence characteristics and control measures of Spodoptera frugiperda in maize.The measures including forecasting and early warning,regional prevention and... Based on practical work experience,this paper analyzed the occurrence characteristics and control measures of Spodoptera frugiperda in maize.The measures including forecasting and early warning,regional prevention and control,agricultural prevention and control,physical prevention and control,chemical prevention and control,and biological prevention and control can effectively control the damage of S.frugiperda and guarantee the safety of food production.The results will provide some reference for the prevention and control of S.frugiperda. 展开更多
关键词 Spodoptera frugiperda Occurrence characteristics Prevention and control measures maize
下载PDF
Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize 被引量:43
9
作者 Hongguang Cai Wei Ma +6 位作者 Xiuzhi Zhang Jieqing Ping Xiaogong Yan Jianzhao Liu Jingchao Yuan Lichun Wang Jun Ren 《The Crop Journal》 SCIE CAS 2014年第5期297-307,共11页
A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated ... A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments. 展开更多
关键词 Spring maize SUBSOIL TILLAGE root morphology GRAIN yield NUTRIENT ACCUMULATION
下载PDF
Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances 被引量:27
10
作者 WU Ya-wei LI Qiang +6 位作者 JIN Rong CHEN Wei LIU Xiao-lin KONG Fan-lei KE Yong-pei SHI Haichun YUAN Ji-chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第6期1246-1256,共11页
Nitrogen(N)is a critical element for plant growth and productivity that influences photosynthesis and chlorophyll fluorescence.We investigated the effect of low-N stress on leaf photosynthesis and chlorophyll fluoresc... Nitrogen(N)is a critical element for plant growth and productivity that influences photosynthesis and chlorophyll fluorescence.We investigated the effect of low-N stress on leaf photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with difference in tolerance to low N levels.The low-N tolerant cultivar ZH311 and low-N sensitive cultivar XY508 were used as the test materials.A field experiment(with three N levels:N0,0 kg ha–1;N1,150 kg ha–1;N2,300 kg ha–1)in Jiyanyang,Sichuan Province,China,and a hydroponic experiment(with two N levels:CK,4 mmol L–1;LN,0.04 mmol L–1)in Chengdu,Sichuan Province,China were conducted.Low-N stress significantly decreased chlorophyll content and rapid light response curves of the maximum fluorescence under light(Fm′),fluorescence instable state(Fs),non-photochemical quenching(qN),the maximum efficiency of PSII photochemistry under dark-adaption(Fv/Fm),potential activity of PSII(Fv/Fo),and actual photochemical efficiency of PSII(ΦPSII)of leaves.Further,it increased the chlorophyll(Chl)a/Chl b values and so on.The light compensation point of ZH311 decreased,while that of XY508 increased.The degree of variation of these indices in low-N tolerant cultivars was lower than that in low-N sensitive cultivars,especially at the seedling stage.Maize could increase Chl a/Chl b,apparent quantum yield and light saturation point to adapt to N stress.Compared to low-N sensitive cultivars,low-N tolerant cultivars maintained a higher net photosynthetic rate and electron transport rate to maintain stronger PSII activity,which further promoted the ability to harvest and transfer light.This might be a photosynthetic mechanism by which low-N tolerant cultivar adapt to low-N stress. 展开更多
关键词 maize NITROGEN CHLOROPHYLL CONTENT PHOTOSYNTHESIS CHLOROPHYLL FLUORESCENCE characteristics
下载PDF
Soil physical properties and maize root growth under different tillage systems in the North China Plain 被引量:10
11
作者 Baizhao Ren Xia Li +3 位作者 Shuting Dong Peng Liu Bin Zhao Jiwang Zhang 《The Crop Journal》 SCIE CAS CSCD 2018年第6期669-676,共8页
The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient co... The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient content and depth of the plow layer under either long-term no-tillage or rotary tillage before winter wheat sowing and no tillage before summer maize sowing. In this study, we investigated the combined effects of tillage practices before winter wheat and summer maize sowing on soil properties and root growth and distribution in summer maize. Zhengdan 958(ZD958) was used as experimental material, with three tillage treatments: rotary tillage before winter wheat sowing and no tillage before summer maize sowing(RTW + NTM), moldboard plowing before winter wheat sowing and no tillage before summer maize sowing(MPW + NTM), and moldboard plowing before winter wheat sowing and rotary tillage before summer maize sowing(MPW + RTM).Tillage practice showed a significant(P < 0.05) effect on grain yield of summer maize. Grain yields under MPW + RTM and MPW + NTM were 30.6% and 24.0% higher, respectively, than that under RTW + NTM. Soil bulk density and soil penetration resistance decreased among tillage systems in the order RTW + NTM > MPW + NTM > MPW + RTM. Soil bulk densities were 3.3% and 515% lower in MPW + NTM and MPW + RTM, respectively, than that in RTW + NTM, and soil penetration resistances were respectively 17.8% and 20.4% lower,across growth stages and soil depths. Root dry matter and root length density were highest under MPW + RTM, with the resulting increased root activity leading to a yield increase of summer maize. Thus the marked effects of moldboard plowing before winter-wheat sowing on root length density, soil penetration resistance, and soil bulk density may contribute to higher yield. 展开更多
关键词 TILLAGE system SUMMER maize SOIL PHYSICAL properties root
下载PDF
Response of root morphology, physiology and endogenous hormones in maize(Zea mays L.) to potassium deficiency 被引量:8
12
作者 ZHAO Xin-hua YU Hai-qiu +4 位作者 WEN Jing WANG Xiao-guang DU Qi WANG Jing WANG Qiao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期785-794,共10页
Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully... Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully understood. To identify the differences of root morphology, physiology and endogenous hormones at different growing stages, two maize inbred lines 90-21-3 (tolerance to K deficiency) and D937 (sensitive to K deficiency) were cultivated in the long-term K fertilizer experimental pool under high potassium (+K) and low potassium (-K) treatments. The results indicated that the root length, volume and surface area of 90-21-3 were significantly higher than those of D937 under -K treatment at different growing stages. It was noteworthy that the lateral roots of 90-21-3 were dramatically higher than those of D937 at tasselling and flowering stage under-K treatment. Meanwhile, the values of superoxide dismutase (SOD) and oxidizing force of 90-21-3 were apparently higher than those of D937, whereas malondialdehyde (MDA) content of D937 was obviously increased. Compared with +K treatment, the indole-3-acetic acid (IAA) content of 90-21-3 was largely increased under-K treatment, whereas it was sharply decreased in D937. On the contrary, abscisic acid (ABA) content of 90-21-3 was slightly increased, but that of D937 was significantly increased. The zeatin riboside (ZR) content of 90-21-3 was significantly decreased, while that of D937 was relatively increased. These results indicated that the endogenous hormones were stimulated in 90-21-3 to adjust lateral root development and to maintain the physiology function thereby alleviating K deficiency. 展开更多
关键词 potassium deficiency maize root morphology physiological variation endogenous hormone
下载PDF
Genetic Improvement of Root Growth Contributes to Efficient Phosphorus Acquisition in maize (Zea mays L.) 被引量:8
13
作者 ZHANG Yi-kai CHEN Fan-jun +5 位作者 CHEN Xiao-chao LONG Li-zhi GAO Kun YUAN Li-xing ZHANG Fu-suo MI Guo-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第6期1098-1111,共14页
Maize plants adapt to low phosphorus (P) stress by increasing root growth. It is of importance to know the extent to which genetic improvement of root growth can enhance P acquisiton. In the present study, the contr... Maize plants adapt to low phosphorus (P) stress by increasing root growth. It is of importance to know the extent to which genetic improvement of root growth can enhance P acquisiton. In the present study, the contribution of root growth improvement to efficient P acquisition was evaluated in two soils using T149 and T222, a pair of near isogenic maize testcrosses which were derived from a backcross BC 4 F 3 population. T149 and T222 showed no difference in shoot biomass and leaf area under normal growth conditions, but differed greatly in root growth. T149 had longer lateral roots and a larger root surface area compared to T222. In calcareous soil, when P was insufficient, i.e., when P was either supplied as KH 2 PO 4 at a concentration of 50 mg P kg-1 soil, or in the form of Phy-P, Ca3-P or Ca10-P, a 43% increase in root length in T149 compared to T222 resulted in an increase in P uptake by 53%, and shoot biomass by 48%. In acid soil, however, when P supply was insufficient, i.e., when P was supplied as KH 2 PO 4 at a concentration of 100 mg P kg-1 soil, or in the form of Phy-P, Fe-P or Al-P, a 32% increase in root length in T149 compared to T222 resulted in an increase in P uptake by only 12%, and shoot biomass by 7%. No significant differences in the exudation of organic acids and APase activity were found between the two genotypes. It is concluded that genetic improvement of root growth can efficiently increase P acquisition in calcareous soils. In acid soils, however, improvements in the physiological traits of roots, in addition to their size, seem to be required for efficient P acquisition. 展开更多
关键词 P efficiency rootS low phosphorus calcareous soil acid soil maize
下载PDF
Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing 被引量:4
14
作者 HAO Lu-yang LIU Xu-yang +11 位作者 ZHANG Xiao-jing SUN Bao-cheng LIU Cheng ZHANG Deng-feng TANG Huai-jun LI Chun-hui LI Yong-xiang SHI Yun-su XIE Xiao-qing SONG Yan-chun WANG Tian-yu LI Yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第2期449-464,共16页
Drought is one of the most important abiotic stresses affecting maize growth and development and therefore resulting in yield loss.Thus it is essential to understand molecular mechanisms of drought stress responses in... Drought is one of the most important abiotic stresses affecting maize growth and development and therefore resulting in yield loss.Thus it is essential to understand molecular mechanisms of drought stress responses in maize for drought tolerance improvement.The root plays a critical role in plants sensing water deficit.In the present study,two maize inbred lines,H082183,a drought-tolerant line,and Lv28,a drought-sensitive line,were grown in the field and treated with different water conditions(moderate drought,severe drought,and well-watered conditions)during vegetative stage.The transcriptomes of their roots were investigated by RNA sequencing.There were 1428 and 512 drought-responsive genes(DRGs)in Lv28,688 and 3363 DRGs in H082183 under moderate drought and severe drought,respectively.A total of 31 Gene Ontology(GO)terms were significantly over-represented in the two lines,13 of which were enriched only in the DRGs of H082183.Based on results of Kyoto encyclopedia of genes and genomes(KEGG)enrichment analysis,"plant hormone signal transduction"and"starch and sucrose metabolism"were enriched in both of the two lines,while"phenylpropanoid biosynthesis"was only enriched in H082183.Further analysis revealed the different expression patterns of genes related to abscisic acid(ABA)signal pathway,trehalose biosynthesis,reactive oxygen scavenging,and transcription factors might contribute to drought tolerance in maize.Our results contribute to illustrating drought-responsive molecular mechanisms and providing gene resources for maize drought improvement. 展开更多
关键词 maize(Zea mays L.) root TRANSCRIPTOME RNA sequencing drought-responsive genes
下载PDF
Loss of Responsiveness to Osmotic Stress in Maize Root:the Effect of Water Channel Blocker HgCl_2 被引量:3
15
作者 ZHU Jian-jun BAI Xin-fu ZHANG Ping WANG Yan-hua 《Agricultural Sciences in China》 CAS CSCD 2010年第8期1230-1235,共6页
In order to investigate the effect of water channel blocker HgCl2 on the hydraulic resistance in roots of maize seedlings, a xylem pressure probe was used to monitor the changes in root xylem pressure in response to N... In order to investigate the effect of water channel blocker HgCl2 on the hydraulic resistance in roots of maize seedlings, a xylem pressure probe was used to monitor the changes in root xylem pressure in response to NaCl- or mannitol-induced osmotic stresses before and after the application of HgCl2. When the maize roots were subjected to 500 umol L-1 HgCl2 in root bathing solution, not only a considerable decline in xylem pressure (increase in xylem tension) was observed, but the loss of responsiveness of the plant to both salt- and mannitol-induced osmotic stresses in terms of xylem pressure change was seen as well when the transpiration rate of the plant was not significantly changed. The results are similar but different from the reversed osmosis by the Fenton reaction in the internodes of Chara coralline, showing that the mechanisms of water transport across cell membrane in plant roots are far more complicated than expected. 展开更多
关键词 AQUAPORIN maize root mercury chloride xylem pressure osmotic stress
下载PDF
Effects of NaCl and Ca^2+on Membrane Potential of Epidermal Cells of Maize Roots 被引量:3
16
作者 HUA Jia-min WANG Xiao-li +2 位作者 ZHAI Fu-qin YAN Feng FENG Ke 《Agricultural Sciences in China》 CAS CSCD 2008年第3期291-296,共6页
The effects of salt-stress on plants involve not only the water stress caused by low osmotic pressure, but also the toxicity of excess Na^+. A large amount of Na^+ entering cells would reduce K^+ uptake, which lead... The effects of salt-stress on plants involve not only the water stress caused by low osmotic pressure, but also the toxicity of excess Na^+. A large amount of Na^+ entering cells would reduce K^+ uptake, which leads to an imbalance of K:Na ratio in cells. One of the reasons for the reduced K^+-uptake is the closure of K^+-channel which is controlled by membrane potential. Calcium is usually applied to improve the growth of plants on saline soils and shows positive influence in the integrality of cell membrane. This study applied glass microelectrode technique to monitoring the NaCl-induced changes of membrane potential of root epidermal cells of maize (Zea mays L., Denghai 11) seedlings at NaCl concentrations of 0, 8, 20, 50, 100, 200 mmol L^-1, respectively. The effect of Ca^2+ on the changes of membrane potential caused by NaCl was also studied. The results showed that: NaCl caused cell membrane depolarization. The depolarization became greater and faster with increasing of NaCl concentration. Moreover, the extent of depolarization was positively correlated with NaCl concentration. The addition of calcium postponed the depolarization, and decreased the degree of depolarization caused by NaCl. High NaCl concentration leads to depolarization of maize root cell membrane, which can partly be counteracted by calcium. 展开更多
关键词 membrane potential sodium chloride CALCIUM epidermal cells maize root
下载PDF
Drip irrigation incorporating water conservation measures:Effects on soil water-nitrogen utilization,root traits and grain production of spring maize in semi-arid areas 被引量:6
17
作者 WU Yang BIAN Shao-feng +4 位作者 LIU Zhi-ming WANG Li-chun WANG Yong-jun XU Wen-hua ZHOU Yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第12期3127-3142,共16页
The Northeast Plain is the largest maize production area in China,and drip irrigation has recently been proposed to cope with the effects of frequent droughts and to improve water use efficiency(WUE).In order to devel... The Northeast Plain is the largest maize production area in China,and drip irrigation has recently been proposed to cope with the effects of frequent droughts and to improve water use efficiency(WUE).In order to develop an efficient and environmentally friendly irrigation system,drip irrigation experiments were conducted in 2016-2018 incorporating different soil water conservation measures as follows:(1)drip irrigation under plastic film mulch(PI),(2)drip irrigation under biodegradable film mulch(BI),(3)drip irrigation incorporating straw returning(SI),and(4)drip irrigation with the tape buried at a shallow soil depth(OI);with furrow irrigation(FI)used as the control.The results showed that PI and Bl gave the highest maize yield,as well as the highest WUE and nitrogen use efficiency(NUE)because of the higher root length density(RLD)and better heat conditions during the vegetative stage.But compared with BI,PI consumed more soil water in the 20-60 and 60-100 cm soil layers,and accelerated the progress of root and leaf senescence due to a larger root system in the top 0-20 cm soil layer and a higher soil temperature during the reproductive stage.SI was effective in improving soil water and nitrate contents,and promoted RLD in deeper soil layers,thereby maintaining higher physiological activity during the reproductive stage.FI resulted in higher nitrate levels in the deep 60-100 cm soil layer,which increased the risk of nitrogen losses by leaching compared with the drip irrigation treatments.RLD in the 0-20 cm soil layer was highly positively correlated with yield,WUE and NUE(P<0.001),but it was negatively correlated with root nitrogen use efficiency(NRE)(P<0.05),and the correlation was weaker in deeper soil layers.We concluded that Bl had advantages in water-nitrogen utilization and yield stability response to drought stress,and thus is recommended for environmentally friendly and sustainable maize production in Northeast China. 展开更多
关键词 drip irrigation root water use efficiency nitrogen use efficiency maize
下载PDF
Nitrogen acquisition,fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition 被引量:6
18
作者 SHAO Ze-qiang ZHENG Cong-cong +4 位作者 Johannes APOSTMA LU Wen-long GAO Qiang GAO Ying-zhi ZHANG Jin-jing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2240-2254,共15页
Nitrogen(N)fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems.However,the extent to whic... Nitrogen(N)fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems.However,the extent to which root morphology contributes to N fixation and transfer is unclear.A two-factorial greenhouse experiment was conducted to quantify the N fixation,transfer and root morphology characteristics of the maize/alfalfa intercropping system in two consecutive years using the 15N-urea leaf labeling method,and combining two N levels with three root separation techniques.N application could inhibit N fixation and transfer in a maize/alfalfa intercropping system.Irrespective of the N application level,compared with plastic sheet separation(PSS),no separation(NS)and nylon mesh separation(NNS)significantly increased the total biomass(36%)and total N content(28%),while the N fixation rate also sharply increased by 75 to 134%,and the amount of N transferred with no root barrier was 1.24–1.42 times greater than that with a mesh barrier.Redundancy analysis(RDA)showed that the crown root dry weight(CRDW)of maize and lateral root number(LRN)of alfalfa showed the strongest associations with N fixation and transfer.Our results highlight the importance of root contact for the enhancement of N fixation and transfer via changes in root morphology in maize/alfalfa intercropping systems,and the overyielding system was achieved via increases in maize growth,at the cost of smaller decreases in alfalfa biomass production. 展开更多
关键词 maize/alfalfa intercropping nitrogen fixation and transfer root morphology nitrogen utilization
下载PDF
Effect of Potassium Deficiency on Root Growth and Nutrient Uptake in Maize (Zea mays L.) 被引量:2
19
作者 Qi Du Xinhua Zhao +4 位作者 Chunji Jiang Xiaoguang Wang Yi Han Jing Wang Haiqiu Yu 《Agricultural Sciences》 2017年第11期1263-1277,共15页
Potassium (K) is an essential nutrient on the growth and development for maize (Zea Mays L.). And the developed root morphology and root activity have great significance to nutrient absorption and play an important ro... Potassium (K) is an essential nutrient on the growth and development for maize (Zea Mays L.). And the developed root morphology and root activity have great significance to nutrient absorption and play an important role in the growth and development of plants. To explore the response to K-deficiency on root growth and nutrient absorption of maize, two inbred lines, 90-21-3 (Tolerance to K deficiency) and D937 (Sensitive to K deficiency) were carried out to investigate the root morphology, root activity, nutrient uptake and related traits. The results showed that K-deficiency inhibited the root growth of 90-21-3 and D937, but increased the ratio of root to shoot (R/S). The total length, root surface area, the root diameter and root volume of root system of 90-21-3 and D937 were significantly decreased by K deficiency, especially the fine root (0 - 0.4 mm) in root length and root surface area. In addition, the K concentration of root in the two lines was significantly decreased, but root activity was significantly improved, which promoted the absorption of the root system to Na+. Compared with D937, 90-21-3 was able to distribute more carbohydrates from shoot to the root system under K deficiency, alleviating the inhibition of root growth. The fine root system was the main part for absorption nutrient. The length and surface area of 90-12-3 were no difference, and significantly decreased by 12.90% and 17.65% in D937 after 5 d of K deficiency. As well, the root activity of 90-21-3 was significantly increased when encountered to K deficiency, which promoted the accumulation of Na+ and Ca2+ and regulated the osmotic stress. Therefore, it could be a responding mechanism for tolerance crop by maintaining large root system, increasing root activity and adjusting nutrient absorption to adapt to K deficiency. 展开更多
关键词 maize K DEFICIENCY root Morphology root Activity NUTRIENT ABSORPTION
下载PDF
Genome-Wide Expression Profile of Maize Root Response to Phosphorus Deficiency Revealed by Deep Sequencing 被引量:1
20
作者 SU Shun-zhong WU Ling +11 位作者 LIU Dan LU Yan-li LIN Hai-jian ZHANG Shu-zhi SHEN Ya-ou LIU Hai-lan ZHANG Zhi-ming RONG Ting-zhao ZHANG Xiao TIAN Yue-hui NIE Zhi GAO Shi-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1216-1229,共14页
Phosphorus (P) is one of the three primary macronutrients that are required in large amounts for plant growth and development. To better understand molecular mechanism of maize and identify relevant genes in respons... Phosphorus (P) is one of the three primary macronutrients that are required in large amounts for plant growth and development. To better understand molecular mechanism of maize and identify relevant genes in response to phosphorus deficiency, we used Solexa/Illumina's digital gene expression (DGE) technology to investigate six genome-wide expression profiles of seedling roots of the low-P tolerant maize inbred line 178. DGE studies were conducted at 6, 24 and 72 h under both phosphorus deficient and sufficient conditions. Approximately 3.93 million raw reads for each sample were sequenced and 6 816 genes exhibited significant levels of differential expressions in at least one of three time points in response to P starvation. The number of genes with increased expression increased over time from 6 to 24 h, whereas genes with decreased expression were more abundant at 72 h, suggesting a gradual response process for P deficiency at different stages. Gene annotations illustrated that most of differentially expressed genes (DEGs) are involved in different cellular and molecular processes such as environmental adaptation and carbohydrate metabolism. The expression of some known genes identified in other plants, such as those involved in root architecture, P metabolism and transport were found to be altered at least two folds, indicating that the mechanisms of molecular and morphological adaptation to P starvation are conserved in plants. This study provides insight into the general molecular mechanisms underlying plant adaptation to low-P stress and thus may facilitate molecular breeding for improving P utilization in maize. 展开更多
关键词 maize phosphorus efficiency root digital gene expression
下载PDF
上一页 1 2 199 下一页 到第
使用帮助 返回顶部