Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that...Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize.展开更多
Southern corn rust(SCR) is a destructive maize disease caused by Puccinia polysora Underw. To investigate the mechanism of SCR resistance in maize, a highly resistant inbred line, L119 A, and a highly susceptible line...Southern corn rust(SCR) is a destructive maize disease caused by Puccinia polysora Underw. To investigate the mechanism of SCR resistance in maize, a highly resistant inbred line, L119 A, and a highly susceptible line, Lx9801, were subjected to gene mapping and transcriptome analysis. Bulked-segregant analysis coupled with whole-genome sequencing revealed several quantitative trait loci(QTL) on chromosomes 1, 6, 8, and 10. A set of 25 genes, including two coiled-coil nucleotide-binding site leucine-rich repeat(CC-NBS-LRR) genes, were identified as candidate genes for a major-effect QTL on chromosome 10. To investigate the mechanism of SCR resistance in L119 A, RNA-seq of P. polysorainoculated and non-inoculated plants of L119 A and Lx9801 was performed. Unexpectedly, the number of differentially expressed genes in inoculated versus non-inoculated L119 A plants was about 10 times that of Lx9801, with only 29 common genes identified in both lines, suggesting extensive gene expression changes in the highly resistant but not in the susceptible line. Based on the transcriptome analysis, one of the CC-NBS-LRR candidate genes was confirmed to be upregulated in L119 A relative to Lx9801 independently of P. polysora inoculation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that transcription factors, as well as genes involved in defense responses and metabolic processes, were dominantly enriched, with the phenylpropanoid biosynthesis pathway most specifically activated. Consistently, accumulation of phenylpropanoid-derived lignin, especially S lignin, was drastically increased in L119 A after P. polysora inoculation, but remained unchanged in Lx9801, suggesting a critical role of lignin in SCR resistance. A regulatory network of defense activation and metabolic change in SCR-resistant maize upon P. polysora infection is described.展开更多
Southern rust (Puccinia polysora Underw.) is a major disease that can cause severe yield losses in maize (Zea mays L.). In our previous study, a major gene RppP25 that confers resistance to southern rust was ident...Southern rust (Puccinia polysora Underw.) is a major disease that can cause severe yield losses in maize (Zea mays L.). In our previous study, a major gene RppP25 that confers resistance to southern rust was identified in inbred line P25. Here, we report the fine mapping and candidate gene analysis of RppP25 from the near-isogenic line F939, which harbors RppP25 in the genetic background of the susceptible inbred line F349. The inheritance of resistance to southern rust was investigated in the BC1F1 and BC3F1 populations, which were derived from a cross between F939 and F349 (as the recurrent parent). The 1:1 segregation ratio of resistance to susceptible plants in these two populations indicated that the resistance is controlled by a single dominant gene. Ten markers, including three simple sequence repeat (SSR) markers and seven insertion/deletion (InDel) markers, were developed in the RppP25 region. RppP25 was delimited to an interval between P091 and M271, with an estimated length of 40 kb based on the physical map of B73. In this region, a candidate gene was identified that was predicted to encode a putative nucleotide-binding site leucine-rich repeat (NBS-LRR) protein. Two co-segregated markers will aid in pyramiding diverse southern rust resistance alleles into elite materials, and thereby improve southern rust resistance worldwide.展开更多
文摘Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize.
基金supported by the Zhongyuan Thousand Talents Program(ZYQR201912168,to MG)the National Natural Science Foundation of China(U2004207,to MG)+1 种基金Fund for Distinguished Young Scholars in Henan(212300410007)the Startup Grant of Henan Agricultural University(30601732,to MG and30500926,to XM)。
文摘Southern corn rust(SCR) is a destructive maize disease caused by Puccinia polysora Underw. To investigate the mechanism of SCR resistance in maize, a highly resistant inbred line, L119 A, and a highly susceptible line, Lx9801, were subjected to gene mapping and transcriptome analysis. Bulked-segregant analysis coupled with whole-genome sequencing revealed several quantitative trait loci(QTL) on chromosomes 1, 6, 8, and 10. A set of 25 genes, including two coiled-coil nucleotide-binding site leucine-rich repeat(CC-NBS-LRR) genes, were identified as candidate genes for a major-effect QTL on chromosome 10. To investigate the mechanism of SCR resistance in L119 A, RNA-seq of P. polysorainoculated and non-inoculated plants of L119 A and Lx9801 was performed. Unexpectedly, the number of differentially expressed genes in inoculated versus non-inoculated L119 A plants was about 10 times that of Lx9801, with only 29 common genes identified in both lines, suggesting extensive gene expression changes in the highly resistant but not in the susceptible line. Based on the transcriptome analysis, one of the CC-NBS-LRR candidate genes was confirmed to be upregulated in L119 A relative to Lx9801 independently of P. polysora inoculation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that transcription factors, as well as genes involved in defense responses and metabolic processes, were dominantly enriched, with the phenylpropanoid biosynthesis pathway most specifically activated. Consistently, accumulation of phenylpropanoid-derived lignin, especially S lignin, was drastically increased in L119 A after P. polysora inoculation, but remained unchanged in Lx9801, suggesting a critical role of lignin in SCR resistance. A regulatory network of defense activation and metabolic change in SCR-resistant maize upon P. polysora infection is described.
基金supported by the State Key Basic Research and Development Plan of China(973)(2009CB118400)the National Hi-Tech Research and Development Program of China(863)(2011AA10A103)
文摘Southern rust (Puccinia polysora Underw.) is a major disease that can cause severe yield losses in maize (Zea mays L.). In our previous study, a major gene RppP25 that confers resistance to southern rust was identified in inbred line P25. Here, we report the fine mapping and candidate gene analysis of RppP25 from the near-isogenic line F939, which harbors RppP25 in the genetic background of the susceptible inbred line F349. The inheritance of resistance to southern rust was investigated in the BC1F1 and BC3F1 populations, which were derived from a cross between F939 and F349 (as the recurrent parent). The 1:1 segregation ratio of resistance to susceptible plants in these two populations indicated that the resistance is controlled by a single dominant gene. Ten markers, including three simple sequence repeat (SSR) markers and seven insertion/deletion (InDel) markers, were developed in the RppP25 region. RppP25 was delimited to an interval between P091 and M271, with an estimated length of 40 kb based on the physical map of B73. In this region, a candidate gene was identified that was predicted to encode a putative nucleotide-binding site leucine-rich repeat (NBS-LRR) protein. Two co-segregated markers will aid in pyramiding diverse southern rust resistance alleles into elite materials, and thereby improve southern rust resistance worldwide.