期刊文献+
共找到31,468篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Planting Density and Nitrogen Amount on Stalk Lodging-Resistance and Yield of Summer Maize in Sichuan Basin 被引量:6
1
作者 陈尚洪 陈红琳 +1 位作者 沈学善 刘定辉 《Agricultural Science & Technology》 CAS 2012年第10期2147-2151,共5页
[Objective] The experiment was conducted to explore the suitable planting density and nitrogen amount for summer maize in Sichuan Basin with the objective to provide technical reservation and scientific basis for high... [Objective] The experiment was conducted to explore the suitable planting density and nitrogen amount for summer maize in Sichuan Basin with the objective to provide technical reservation and scientific basis for high-yielding cultivation technique.[Method] A widely planted maize cultivar 'Chengdan 30' was used as experimental material to study the effects of planting density and nitrogen amount on the stalk agronomic traits,stalk lodging-resistance mechanical characters,stalk breaking percentage and yield of maize.Experiment was arranged in a two-factor split plot design with three replicates.The planting density was the main factor with three density gradients(4.5×10^4,6.0×10^4 and 7.5×10^4 plants/hm^2) and the nitrogen amount was the second factor with two different levels of nitrogen content(300 and 375 kg/hm^2).[Result] The stalk lodging-resistance and yield were affected by planting density significantly.The increase of planting density would result in an increase of internode length and decrease of internode diameter,dry matter weight of per unit stalk length,rind penetration strength and breaking resistance of 3rd and 4th basal internodes.When planting density increased from 6.0×10^4 plants/hm2 to 7.5×10^4 plants/hm^2,the stalk breaking percentage in the whole growing season increased by 17.17%,and the yield reduced by 17.58%.The interaction between planting density and nitrogen amount affected the stalk breaking percentage in the whole growing season and yield significantly.The treatment with planting density of 6.0×104 plants/hm^2 and nitrogen amount of 375 kg/hm^2 of pure N was an optimal combination,which may not only control the stalk breaking percentage of whole growing stage effectively,but also could obtain an optimum grain yield.[Conclusion] In Sichuan Basin,the appropriate planting density and nitrogen amount for summer maize were 6.0×10^4 plants/hm^2 and 375 kg/hm^2. 展开更多
关键词 Summer maize Planting density Nitrogen amount Stalk lodging resistance YIELD
下载PDF
Effects of Four Kinds of Plant Growth Regulators on Maize Yield and Lodging Resistance
2
作者 孙扣忠 赫明涛 《Agricultural Science & Technology》 CAS 2017年第3期540-542,共3页
The research reviewed use effects of Yuhuangjin, Xishibao, Zhuangfengling and Jianzhuangsu on Jinhai No. 5. The results showed plant height and ear height declined in varying degrees, as well as empty-stalk rate and l... The research reviewed use effects of Yuhuangjin, Xishibao, Zhuangfengling and Jianzhuangsu on Jinhai No. 5. The results showed plant height and ear height declined in varying degrees, as well as empty-stalk rate and lodging rate, with the plant growth regulators applied. Economic characters all improved, including ear length and diameter, barren-tip length and hundred-seed weight, and corn yield went up significantly on average. For example, the increased yield can be as high as 17.43% when Yuhuangjin was applied at 30 ml/hm^2. 展开更多
关键词 Growth Regulators maize lodging resistance YIELD
下载PDF
Research progress on reduced lodging of high-yield and-density maize 被引量:48
3
作者 XUE Jun XIE Rui-zhi +5 位作者 ZHANG Wang-feng WANG Ke-ru HOU Peng MING Bo GOU Ling LI Shao-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2717-2725,共9页
Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor r... Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars. 展开更多
关键词 maize lodging resistance stalk strength high yield high plant density
下载PDF
Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates 被引量:21
4
作者 WANG Qun XUE Jun +7 位作者 CHEN Jiang-lu FAN Ying-hu ZHANG Guo-qiang XIE Rui-zhi MING Bo HOU Peng WANG Ke-ru LI Shao-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第10期2419-2428,共10页
The accurate evaluation of maize stalk lodging resistance in different growth periods enables timely management of lodging risks and ensures stable and high maize yields.Here,we established five diferent sowing dates ... The accurate evaluation of maize stalk lodging resistance in different growth periods enables timely management of lodging risks and ensures stable and high maize yields.Here,we established five diferent sowing dates to create diferent conditions for maize growth.We evaluated the effects of the different growth conditions on lodging resistance by determining stalk morphology,moisture content,mechanical strength and dry matter,and the relationship between stalk breaking force and these indicators during the silking stage(R1),milk stage(R3),physiological maturity stage(R6),and 20 days after R6.Plant height at R1 positively affected stalk breaking force.At R3,the cofficient of ear height and the dry weight per unit length of basal internodes were key indicators of stalk lodging resistance.At R6,the key indicators were the coefficient of the center of gravity height and plant fresh weight.After R6,the key indicator was the coefficient of the center of gravity height.The crushing strength of the fourth internode correlated significanty and positively with the stalk breaking force from R1 to R6,which indicates that crushing strength is a reliable indicator of stalk mechanical strength.These results suggest that high stalk strength and low ear height beneft lodging resistance prior to R6.During and after R6,the cofficient of the center of gravity height and the mechanical strength of basal internodes can be used to evaluate plant lodging resistance and the appropriate time for harvesting in fields with a high lodging risk. 展开更多
关键词 maize lodging resistance stalk strength growth periods breaking force
下载PDF
Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China 被引量:13
5
作者 LIU Xiao-ming GU Wan-rong +2 位作者 LI Cong-feng LI Jing WEI Shi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期511-526,共16页
Now,lodging is a major constraint factor contributing to yield loss of maize (Zea mays L.) under high planting density.Chemical regulation and nitrogen fertilizer could effectively coordinate the relationship between ... Now,lodging is a major constraint factor contributing to yield loss of maize (Zea mays L.) under high planting density.Chemical regulation and nitrogen fertilizer could effectively coordinate the relationship between stem lodging and maize yield,which significantly reduce lodging and improve the grain yield.The purpose of this study was to explore the effects of chemical regulation and different nitrogen application rates on lodging characteristics,grain filling and yield of maize under high density.For this,we established a field study during 2017 and 2018 growing seasons,with three nitrogen levels of N100 (100 kg ha^(–1)),N200 (200 kg ha^(–1)) and N300 (300 kg ha^(–1)) at high planting density (90 000 plants ha^(–1)),and applied plant growth regulator (Yuhuangjin,the mixture of 3% DTA-6 and 27% ethephon) at the 7th leaf.The results showed that chemical control increased the activities of phenylalanine ammonia-lyase (PAL),tyrosine ammonia-lyase (TAL),4-coumarate:Co A ligase (4CL),and cinnamyl alcohol dehydrogenase (CAD),and increased the lignin,cellulose and hemicellulose contents at the bottom of the 3rd internode,which significantly reduced the lodging percentage.The lignin-related enzyme activities,lignin,cellulose and hemicellulose contents decreased with the increase of nitrogen fertilizer,which significantly increased the lodging percentage.The 200 kg ha^(–1) nitrogen application and chemical control increased the number,diameter,angle,volume,and dry weight of brace roots.The 200 kg ha^(–1) nitrogen application and chemical control significantly increased the activities of ADP-glucose pyrophosphorylase (AGPase),soluble starch synthase (SSS) and starch branching enzyme(SBE),which promoted the starch accumulation in grains.Additional,improved the maximum grain filling rate (V_(max)) and mean grain filling rate (V_(m)),which promoted the grain filling process,significantly increased grain weight and grain number per ear,thus increased the final yield. 展开更多
关键词 lodging resistance grain filling starch synthesis YIELD maize
下载PDF
Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density 被引量:9
6
作者 LI Bin GAO Fei +4 位作者 REN Bai-zhao DONG Shu-ting LIU Peng ZHAO Bin ZHANG Ji-wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2077-2089,共13页
Hybrids and planting density are the main factors affecting maize lodging resistance.Here,we aimed to elucidate the mechanism of the regulation of maize lodging resistance by comparing two hybrids at various planting ... Hybrids and planting density are the main factors affecting maize lodging resistance.Here,we aimed to elucidate the mechanism of the regulation of maize lodging resistance by comparing two hybrids at various planting densities from the perspective of lignin metabolism.Our results showed that compared to lodging-susceptible hybrid Xundan 20(XD20),lodging-resistant hybrid Denghai 605(DH605)showed a lower center of gravity and culm morphological characteristics that contributed to the higher lodging resistance of this hybrid.Lignin content,activities of key lignin synthesis-related enzymes and G-,S-and H-type monomer contents were significantly higher in hybrid DH605 than in hybrid XD20.Stalk mechanical strength,lignin accumulation and enzyme activity decreased significantly with increasing planting density in the two hybrids.While G-type monomers first decreased with increasing planting density but then remained stable,S-type monomers showed a decreasing trend,and H-type monomers showed an increasing trend.Correlation analysis showed that lodging rate was significantly correlated with plant traits and lignin metabolism.Therefore,maize hybrids characterized by high lignin accumulation,high lignin synthesis-related activities,high S-type monomer content,low center of gravity,high stem puncture strength,high cortical thickness,and small vascular bundle area are more resistant to lodging.High planting densities reduce stalk lignin accumulation,relevant enzyme activities and mechanical strength,thereby,ultimately increasing the lodging rate significantly. 展开更多
关键词 summer maize lignin metabolism stem morphological characteristics lodging resistance
下载PDF
Nitrogen management improves lodging resistance and production in maize(Zea mays L.)at a high plant density 被引量:5
7
作者 Irshad AHMAD Maksat BATYRBEK +6 位作者 Khushnuma IKRAM Shakeel AHMAD Muhammad KAMRAN Misbah Raham Sher KHAN HOU Fu-jiang HAN Qing-fang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期417-433,共17页
Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,ligni... Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density. 展开更多
关键词 high plant density lodging resistance maize nitrogen rates nitrogen application modes
下载PDF
Identification of traits and genes associated with lodging resistance in maize 被引量:3
8
作者 Yu Guo Yumei Hu +7 位作者 Huan Chen Pengshuai Yan Qingguo Du Yafei Wang Hongqiu Wang Zhonghua Wang Dingming Kang Wen-Xue Li 《The Crop Journal》 SCIE CSCD 2021年第6期1408-1417,共10页
Lodging is a major problem limiting maize yield worldwide. However, the mechanisms of lodging resistance remain incompletely understood for maize. Here, we evaluated 443 maize accessions for lodging resistance in the ... Lodging is a major problem limiting maize yield worldwide. However, the mechanisms of lodging resistance remain incompletely understood for maize. Here, we evaluated 443 maize accessions for lodging resistance in the field. Five lodging-resistant accessions and five lodging-sensitive accessions were selected for further research. The leaf number, plant height, stem diameter, and rind penetrometer resistance were similar between lodging-resistant and-sensitive inbred lines. The average thickness of sclerenchymatous hypodermis layer was thicker and the vascular area was larger in the lodging-resistant lines compared with lodging-sensitive lines. Although total lignin content in stem tissue did not significantly differ between lodging-resistant and-sensitive lines, phloroglucinol staining revealed that the lignin content of the cell wall in the stem cortex and in the stem vascular tissue near the cortex was higher in the lodging-resistant lines than in the lodging-sensitive lines. Analysis of strand-specific RNA-seq transcriptome showed that a total of 793 genes were up-regulated and 713 genes were down-regulated in lodging-resistant lines relative to lodging-sensitive lines. The up-regulated genes in lodging-resistant lines were enriched in cell wall biogenesis. These results indicated that modification of cell wall biosynthesis would contribute to lodging resistance of maize. 展开更多
关键词 lodging Sclerenchyma cell LIGNIN Differentially expressed genes maize
下载PDF
The relationships between maize(Zea mays L.)lodging resistance and yield formation depend on dry matter allocation to ear and stem 被引量:1
9
作者 Ping Zhang Shuangcheng Gu +5 位作者 Yuanyuan Wang Chenchen Xu Yating Zhao Xiaoli Liu Pu Wang Shoubing Huang 《The Crop Journal》 SCIE CSCD 2023年第1期258-268,共11页
Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yi... Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs. 展开更多
关键词 CORN lodging Yield formation Physical traits Dry matter allocation
下载PDF
GIS-based evaluation of maize cultivar lodging resistance performance in target growing environments 被引量:1
10
作者 Mi Chunqiao Liu Zhe +2 位作者 Zhang Xiaodong Peng Xiaoning Huang Bin 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第3期51-58,共8页
Lodging in maize is one of the major problems in maize production worldwide,which causes serious yield and economic losses annually.By evaluating cultivar lodging resistance performance in target growing environments ... Lodging in maize is one of the major problems in maize production worldwide,which causes serious yield and economic losses annually.By evaluating cultivar lodging resistance performance in target growing environments before cultivar extension and application,the risks and losses can be significantly reduced.In this study,a GIS-based quantitative method for evaluating maize cultivar lodging resistance performance in target growing environments was established based on full cognition of environment stress,cultivar resistance,and the interaction between them.At first,comprehensive environment lodging stress is measured by three factors:1)extreme wind event in maize vegetative stage which is the direct factor,2)soil potassium content in target growing environment which is an indirect factor affecting corn stem sturdiness,and 3)planting density which is a human influence factor.Quantification methods of extreme probability analysis,spatial interpolation,normalization,and so on were used.Then,maize cultivar lodging resistance was determined using cumulative frequency distribution analysis of tested lodging data.At last,an evaluation matrix was established combining environment lodging stress and cultivar lodging resistance together,which was very simple and easy to understand method and the result is promising providing good direct support in practical cultivar application.The method used in this study,at county-level,cultivar-level and stress-level with GIS,can facilitate the identification of better-adapted growing environments for a specific maize cultivar,and provide direct support for maize cultivar recommendation and extension,so as to reduce the risk and loss of lodging in maize.It is more easy-operational and feasible than traditional surveying approach,especially for large-scale spatial trend analysis.So it is of both academic significance in accelerating precision agriculture development and practical significance in improving maize cultivar application. 展开更多
关键词 lodging in maize environment lodging stress cultivar lodging resistance GIS maize production growing environment
原文传递
Combining field data and modeling to better understand maize growth response to phosphorus(P) fertilizer application and soil P dynamics in calcareous soils
11
作者 Weina Zhang Zhigan Zhao +3 位作者 Di He Junhe Liu Haigang Li Enli Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1006-1021,共16页
We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a f... We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a fluvo-aquic soil in the North China Plain.Crop and soil data from a 2-year experiment with three P fertilizer application rates(0,75 and 300 kg P_(2)O_(5) ha^(–1)) were used to calibrate the model.Sensitivity analysis was carried out to investigate the influence of APSIM SoilP parameters on the simulated P availability in soil and maize growth.Crop and soil P parameters were then derived by matching or relating the simulation results to observed crop biomass,yield,P uptake and Olsen-P in soil.The re-parameterized model was further validated against 2 years of independent data at the same sites.The re-parameterized model enabled good simulation of the maize leaf area index (LAI),biomass,grain yield,P uptake,and grain P content in response to different levels of P additions against both the calibration and validation datasets.Our results showed that APSIM needs to be re-parameterized for simulation of maize LAI dynamics through modification of leaf size curve and a reduction in the rate of leaf senescence for modern staygreen maize cultivars in China.The P concentration limits (maximum and minimum P concentrations in organs)at different stages also need to be adjusted.Our results further showed a curvilinear relationship between the measured Olsen-P concentration and simulated labile P content,which could facilitate the initialization of APSIM P pools in the NCP with Olsen-P measurements in future studies.It remains difficult to parameterize the APSIM SoilP module due to the conceptual nature of the pools and simplified conceptualization of key P transformation processes.A fundamental understanding still needs to be developed for modelling and predicting the fate of applied P fertilizers in soils with contrasting physical and chemical characteristics. 展开更多
关键词 maize phosphorus availability modeling APSIM maize APSIM SoilP
下载PDF
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions 被引量:4
12
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density maize grain yield N uptake compensation effect
下载PDF
ZmbZIP27 regulates nitrogen-mediated leaf angle by modulating lignin deposition in maize 被引量:1
13
作者 Huan Chen Xiaoping Gong +3 位作者 Yu Guo Jingjuan Yu Wen-Xue Li Qingguo Du 《The Crop Journal》 SCIE CSCD 2024年第5期1404-1413,共10页
In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N ... In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize. 展开更多
关键词 maize NITROGEN Leaf angle Ligular region Lignin deposition
下载PDF
The transcription factor ZmNAC84 increases maize salt tolerance by regulating ZmCAT1 expression 被引量:1
14
作者 Yitian Pan Tong Han +2 位作者 Yang Xiang Caifen Wang Aying Zhang 《The Crop Journal》 SCIE CSCD 2024年第5期1344-1356,共13页
Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC ... Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC in antioxidant defense.Here,our genetic studies reveal the positive regulation of salt tolerance in maize by the transcription factor ZmNAC84.Under salt stress,overexpression of ZmNAC84 in maize increased the expression of ZmCAT1,enhanced CAT activity,and consequently reduced H_(2)O_(2) accumulation,thereby improving salt stress tolerance in maize.Whereas RNA interference-mediated knockdown of ZmNAC84 produced the opposite effect.Subsequently,we found that ZmNAC84 directly binds to and regulates the expression of the ZmCAT1 promoter,and the hybridized material also demonstrated that ZmCAT1 is a downstream target gene of ZmNAC84.In addition,phenotypic and biochemical analyses indicated that ZmCAT1 positively regulated salt tolerance by regulating H_(2)O_(2) accumulation under salt stress.Taken together,these results reveal the function of ZmNAC84 in regulating ZmCAT1-mediated antioxidant defense in response to salt stress in plants. 展开更多
关键词 maize ZmNAC84 ZmCAT1 Salt stress
下载PDF
Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil 被引量:1
15
作者 Minghui Cao Yan Duan +6 位作者 Minghao Li Caiguo Tang Wenjie Kan Jiangye Li Huilan Zhang Wenling Zhong Lifang Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期698-710,共13页
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif... Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies. 展开更多
关键词 FERTILIZATION manure substitution soil fertility maize yield bacterial community
下载PDF
Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China 被引量:1
16
作者 Cheng Guo Xiaojie Zhang +9 位作者 Baobao Wang Zhihuan Yang Jiping Li Shengjun Xu Chunming Wang Zhijie Guo Tianwang Zhou Liu Hong Xiaoming Wang Canxing Duan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期888-900,共13页
Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and s... Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and symptoms of this disease include irregular chlorotic lesions on the tips and edges of infected leaves and black punctate fruiting bodies in dead leaf tissues. Given favourable environmental conditions, this disease spread to areas surrounding Gansu. In this study, infected leaves were collected from Gansu and Ningxia Hui Autonomous Region between 2018and 2020 to identify the disease-causing pathogen. Based on morphological features, pathogenicity tests, and multilocus phylogenetic analysis involving internal transcribed spacer(ITS), 18S small subunit rDNA(SSU), 28S large subunit rDNA(LSU), translation elongation factor 1-alpha(TEF), and β-tubulin(TUB) sequences, Eutiarosporella dactylidis was identified as the causative pathogen of this newly discovered leaf blight. Furthermore, an in vitro bioassay was conducted on representative strains using six fungicides, and both fludioxonil and carbendazim were found to significantly inhibit the mycelial growth of E. dactylidis. The results of this study provide a reference for the detection and management of Eutiarosporella leaf blight. 展开更多
关键词 maize leaf blight MORPHOLOGY molecular phylogeny Eutiarosporella dactylidis fungicide sensitivity
下载PDF
Dynamics and genetic regulation of macronutrient concentrations during grain development in maize 被引量:1
17
作者 Pengcheng Li Shuangyi Yin +7 位作者 Yunyun Wang Tianze Zhu Xinjie Zhu Minggang Ji Wenye Rui Houmiao Wang Chenwu Xu Zefeng Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期781-794,共14页
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an... Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize. 展开更多
关键词 maize nutrient concentration unconditional QTL mapping conditional QTL mapping dynamic trait
下载PDF
Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District,China 被引量:1
18
作者 LI Chaoqun HAN Wenting PENG Manman 《Journal of Arid Land》 SCIE CSCD 2024年第2期282-297,共16页
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho... Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously. 展开更多
关键词 carbon dioxide exchange maize growth drip irrigation harvest index net primary productivity Hetao Irrigation District
下载PDF
Utilizing auxin dwarf genes to optimize seed yield and lodging resistance in rapeseed
19
作者 Hongxiang Lou Yan Peng +10 位作者 Chunyun Wang Zongkai Wang Bowen Zhao Ali Mahmoud El-Badri Maria Batool Bo Wang Jing Wang Zhenghua Xu Jie Zhao Jie Kuai Guangsheng Zhou 《The Crop Journal》 SCIE CSCD 2024年第4期1208-1221,共14页
Direct-seeding rapeseed production at high plant density raises the risk of lodging.We investigated the use of dwarf genes to improve rapeseed plant architecture to balance yield and lodging.Three genotypes with diffe... Direct-seeding rapeseed production at high plant density raises the risk of lodging.We investigated the use of dwarf genes to improve rapeseed plant architecture to balance yield and lodging.Three genotypes with different plant architectures(dwarf sca^(HS5),semi-dwarf+/sca^(HS5),and tall ^(HS5))were evaluated under varying nitrogen rates(N1,N2,and N3:120,240,and 360 kg N ha^(-1))and plant densities(D1,D2,and D3:15,45,and 75 plants m^(-2))from 2019 to 2022.The results showed that increasing N rate positively influenced yield while decreasing lodging resistance in all genotypes.Increasing plant density(D2-D3)enhanced lodging resistance and yield in sca^(HS5) and+/sca^(HS5),but reduced yield in ^(HS5).Compared to the two parents,+/sca^(HS5) exhibited moderate expressions of IAA3,GH3.15,and SAUR30 in stems under N2D3,resulting in reduced plant height and increased compactness.Additionally,+/sca^(HS5) had a thicker silique layer than ^(HS5) by 14.7%,and it had a significant correlation between branch height/angle and yield.Increasing N rate led to increased lignin and pectin contents,while cellulose content decreased.Increasing plant density resulted in greater stem cellulose content and CSLA3/7 expression in sca^(HS5) and+/sca^(HS5),but decreased in ^(HS5).Compared to ^(HS5),+/sca^(HS5) exhibited higher expressions of ARAD1 and GAUT4,along with a 51.1%increase in pectin content,leading to improved lodging resistance under N2D3.Consequently,+/sca^(HS5) showed a 46.4%higher yield and 38.9%lodging resistance than ^(HS5) under N2D3,while sca^(HS5) demonstrated strong lodging resistance but lower yield potential.Overall,this study underscores the potential of utilizing auxin dwarf genes to optimize the trade-off between yield and lodging resistance in rapeseed and the possibility of maximizing yield potential by optimizing the plant architecture of+/sca^(HS5) through nitrogen reduction and dense planting. 展开更多
关键词 RAPESEED Plant density NITROGEN lodging AUXIN
下载PDF
基于APSIM-Maize模型的石羊河流域春玉米适宜种植区产量模拟及参数优化
20
作者 史博然 韩娜娜 +3 位作者 彭致功 周青云 李松敏 王敏敏 《节水灌溉》 北大核心 2024年第12期55-62,71,共9页
为提高APSIM-Maize模型在西北干旱条件下对春玉米产量模拟的精准性,以甘肃省石羊河流域春玉米适宜种植区(永昌县、民勤县、凉州区、古浪县)为研究区域,通过查阅与研究地区春玉米相关的49篇大田试验文献获得2009-2022年共115对观测数据,... 为提高APSIM-Maize模型在西北干旱条件下对春玉米产量模拟的精准性,以甘肃省石羊河流域春玉米适宜种植区(永昌县、民勤县、凉州区、古浪县)为研究区域,通过查阅与研究地区春玉米相关的49篇大田试验文献获得2009-2022年共115对观测数据,基于APSIM-Maize模型,采用敏感性指数SI法和修正的Morris法对水分利用率、光周期斜率等21个模型参数进行敏感性分析,针对4个适宜种植区分别对筛选的敏感参数进行优化验证。结果表明:(1)对春玉米产量较敏感的模型参数有5个,敏感大小分别为蒸腾效率系数>出苗到拔节结束积温>光合作用与辐射利用效率>开花至开始灌浆积温>茎向籽粒转移的生物量;(2)针对不同适宜种植区,参数优化效果有所差异,其中永昌县、凉州区及古浪县效果较好,民勤县的优化效果次之;(3)春玉米适宜种植区参数优化后的产量实测值与模拟值之间的相关系数分别由0.566提高到0.978、0.341提高到0.809、0.455提高到0.953、0.537提高到0.936,均方根误差分别由1837.10~3088.72 kg/hm^(2)减小到341.64~996.64 kg/hm^(2),优化后的参数有效的提高了模型模拟产量的精度。 展开更多
关键词 春玉米 APSIM-maize模型 产量 适宜种植区 敏感性分析 参数
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部