Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f...Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.展开更多
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements...This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.展开更多
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi...The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications.展开更多
The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the d...The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.展开更多
In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was ...In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.展开更多
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B...In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.展开更多
The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the sect...The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.展开更多
Understanding stand structure and height-diameter relationship of trees provides very useful information to establish appropriate countermeasures for sustainable management of endangered forests. Populus euphratica, a...Understanding stand structure and height-diameter relationship of trees provides very useful information to establish appropriate countermeasures for sustainable management of endangered forests. Populus euphratica, a dominant tree species along the Tarim River watershed, plays an irreplaceable role in the sustainable development of regional ecology, economy and society. However, as the result of climate changes and human activities, the natural riparian ecosystems within the whole river basin were degraded enormously, particularly in the lower reaches of the river where about 320 km of the riparian forests were either highly degraded or dead. In this study, we presented one of the main criteria for the assessment of vitality of P. euphrafica forests by estimating the defoliation level, and analyzed forest structure and determined the height-diameter (height means the height of a tree and diameter means the diameter at breast height (DBH) of a tree) relationship of trees in different vitality classes (i.e. healthy, good, medium, senesced, dying, dead and fallen). Trees classified as healthy and good ac- counted for approximately 40% of all sample trees, while slightly and highly degraded trees took up nearly 60% of total sample trees. The values of TH (tree height) and DBH ranged from 0-19 m and 0-125 cm, respectively. Trees more than 15 m in TH and 60 cm in DBH appeared sporadically. Trees in different vitality classes had different distribution patterns. Healthy trees were mainly composed more of relatively younger trees than of degraded tress. The height-diameter relationships differed greatly among tress in different vitality classes, with the coefficients ranging from 0.1653 to 0.6942. Correlation coefficients of TH and DBH in healthy and good trees were higher than those in trees of other vitality classes. The correlation between TH and DBH decreased with the decline of tree vitality. Our results suggested that it might be able to differentiate degraded P. euphratica trees from healthy trees by determining the height-diameter correlation coefficient, and the coefficient would be a new parameter for detecting degradation and assessing sustainable management of floodplain forests in arid regions. In addition, tree vitality should be taken into account to make an accurate height-diameter model for tree height prediction.展开更多
A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is ...A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.展开更多
When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds...When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements.展开更多
In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model...In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model of elastoplastic stability of high pier.By considering the combined action of pile,soil and pier together,the destabilization bearing capacity was calculated by using 3-D finite element method(3-D FEM) for piers with different pile and section height.Meanwhile,the equivalent stress in different sections of pier was computed and the processor of destabilization was discussed.When the pier is lower,the bearing capacity under mutual effect of pile,soil and pier is less than the situation when mutual effect is not considered;when the pier is higher,their differences are not conspicuous.Along with the increase of the cross-sectional height,the direction of destabilization bearing capacity is varied and the ultimate capacity is buildup.The results of a stability analysis example are almost identical with the practice.展开更多
The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape...The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilib-rium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.展开更多
This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamp...This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.展开更多
A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower ...A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower limits for the bifurcating point in a whole linear elastic structural system,as well as an ap- proximate solution to asymptotic post-buckling problem.Some numerical examples are included.展开更多
Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza...Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.展开更多
In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated....In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.展开更多
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with...This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.展开更多
Managing mature Douglas-fir[Pseudotsuga menziesii(Mirb.)Franco]stands to emulate the structural complexity of natural old-growth forest requires identifying structural targets at the sub-stand level at which neighborh...Managing mature Douglas-fir[Pseudotsuga menziesii(Mirb.)Franco]stands to emulate the structural complexity of natural old-growth forest requires identifying structural targets at the sub-stand level at which neighborhood dynamics and patchy disturbance shape structure.We therefore sought to describe the archetypal shapes of predominant sub-stand diameter distribution types(DDTs)observed in natural tree neighborhoods in stands comprising a chronosequence(ca.120-450+yrs)encompassing mature,vertical diversification,and horizontal diversification development stages.The ten 1.0 ha stands are located in the southcentral Oregon Cascades,USA.Building on the known spatial position of each tree,natural tree neighborhoods were identified using the floating neighborhood approach based on spatial tessellation connecting neighboring trees at the first-(mean 61 m2)through fifth-(mean 2058 m2)order scales.Cluster analysis was then used to objectively identify the most predominant DDTs among the relative tree size distributions observed in the trans-scale neighborhoods within each stand.Repeated measures regression was used to classify each DDT to one of six observed archetypal shapes:negative exponential,unimodal,rotated sigmoid,bimodal,concave,or multi-modal.Only three of the 81 observed DDTs deviated by<10%from the stand average,while every stand had at least one DDT that deviated by>50%(maximum 83%).Within each stand,five to ten predominant DDTs were observed,which deviated from the stand average by 30-48%and were characterized by two to five different archetypal shapes.Consequently,in some stands the majority of tree neighborhoods were best characterized by a different shape from that assigned at the stand level.Deviation from the stand average increased from the youngest stand in the mature development stage through the middle stands in the vertical diversification stage to the oldest stands in the horizontal diversification stage.The complexity of DDT shapes tended to increase along the chronosequence(from negative exponential and uniform toward concave and multi-modal),with shape richness highest mid-sequence and evenness peaking in the oldest stands.The high diversity of sub-stand structural complexity reduces the utility of standlevel diameter distributions as old-growth restoration targets.However,the presence in early-sequence stands of sub-stand diameter distributions common to later-sequence stands may facilitate active management at the neighborhood level to promote future old-growth condition.Restoration of substand diameter structures would likely require combining spatial perspectives,such as by augmenting tree-level croptree management with diameter distribution targets for the resulting tree neighborhoods.展开更多
Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and econ...Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and economic potential.However,quadratic mean diameter can be heavily influenced by the presence or absence of large numbers of small stems in lower canopy strata,and it is also sensitive to left-truncation of the diameter distribution,making its interpretation across inventories with different protocols challenging.Here,we examine three alternative expressions of stand diameter:the arithmetic and quadratic mean diameter of the thickest 100 trees per hectare,and the basal area-weighted mean diameter.Using data from the United States Forest Inventory and Analysis program for New York and New England,these alternative expressions showed closer correlation with multiple stand structural variables than did quadratic mean diameter,including merchantable cubic and board foot volume per hectare,aboveground live tree carbon per hectare,and total number of live and dead standing trees greater than 40 cm diameter at breast height per hectare(previously proposed as an index of old-growth structure).Arithmetic and quadratic mean diameter of the thickest 100 trees per hectare showed nearly identical performance,and the strongest correlations across the board.We develop closed-form expressions for these variables when the diameter distribution is a Weibull,and illustrate their behavior relative to quadratic mean diameter for that situation.While the reasons for prevalence of quadratic mean diameter as an indicator remain valid,we suggest that these alternative measures should be more widely reported and analyzed to give a more informative depiction of stand structure and development in complex forests.展开更多
[Objective] The paper was to explore the microscopic structure of rabbit hair. [Method] Single rabbit hair with typical features was selected to observe its mi- croscopic structure from tip to root, and its fiber diam...[Objective] The paper was to explore the microscopic structure of rabbit hair. [Method] Single rabbit hair with typical features was selected to observe its mi- croscopic structure from tip to root, and its fiber diameter was also measured. [Result] The rabbit hair tip was constituted by scale layer and cortical layer, without medullary layer; the middle part was generally constituted by scale layer, cortical layer and medullary layer; the root had no medullary layer, and the scale layer was wheatear-shaped. This was the property of rabbit hair, which could be used for comparative studies with other animal fiber and species identification. Rabbit hair had developed medullary layer, and fiber diameter was positively related to column number of medullary cavity. The hair generally was single column, and coarse hair was multi-column. Single rabbit hair was the finest in the tip, coarse in the middle and tapering in the root. The diameter difference of various parts was large, and the ex- ternal growth characteristics was spindle-shaped. [Conclusion] Using biological micro- scope method to identify different animal fur and product species is more objective and simple.展开更多
基金The authors are grateful for the support by National Key Research and Development Program of China(2021YFF0500300,2020YFB1708300)the National Natural Science Foundation of China(52205280,12172041).
文摘Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.
基金supported by the National Natural Science Foundation of China(No.11802165)the China Postdoctoral Science Foundation(Grant No.2019M650158).
文摘This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.
基金Supported by National Natural Science Foundation of China(Grant Nos.51905555,52105523)Hu-Xiang Youth Talent Program of China(Grant No.2020RC3009)Innovation-Driven Project of Central South University of China(Grant No.2019CX017).
文摘The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications.
基金This paper was supported by National Strategy Key Project, Research and Paradigm on Ecological Harvesting and Regeneration Tech-nique for Northeast Natural Forest (2001BA510B07-02)
文摘The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.
基金Project(50175110) supported by the National Natural Science Foundation of ChinaProject(2009bsxt019) supported by the Graduate Degree Thesis Innovation Foundation of Central South University, China
文摘In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.
基金by the National Natural Science Foundation of China under grant No. 50775050the State Key Laboratory of Solidif ication Processing in NWPU (200702)
文摘The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.
基金supported by International Science & Technology Cooperation Program of China (2010DFA92720-12)the National Natural Science Foundation of China (31360200)+1 种基金the German Volkswagen Foundation Eco CAR Project (Az88497)the German Federal Ministry of Education and Research (BMBF) within the framework of the Su Ma Ri O Project (01LL0918D)
文摘Understanding stand structure and height-diameter relationship of trees provides very useful information to establish appropriate countermeasures for sustainable management of endangered forests. Populus euphratica, a dominant tree species along the Tarim River watershed, plays an irreplaceable role in the sustainable development of regional ecology, economy and society. However, as the result of climate changes and human activities, the natural riparian ecosystems within the whole river basin were degraded enormously, particularly in the lower reaches of the river where about 320 km of the riparian forests were either highly degraded or dead. In this study, we presented one of the main criteria for the assessment of vitality of P. euphrafica forests by estimating the defoliation level, and analyzed forest structure and determined the height-diameter (height means the height of a tree and diameter means the diameter at breast height (DBH) of a tree) relationship of trees in different vitality classes (i.e. healthy, good, medium, senesced, dying, dead and fallen). Trees classified as healthy and good ac- counted for approximately 40% of all sample trees, while slightly and highly degraded trees took up nearly 60% of total sample trees. The values of TH (tree height) and DBH ranged from 0-19 m and 0-125 cm, respectively. Trees more than 15 m in TH and 60 cm in DBH appeared sporadically. Trees in different vitality classes had different distribution patterns. Healthy trees were mainly composed more of relatively younger trees than of degraded tress. The height-diameter relationships differed greatly among tress in different vitality classes, with the coefficients ranging from 0.1653 to 0.6942. Correlation coefficients of TH and DBH in healthy and good trees were higher than those in trees of other vitality classes. The correlation between TH and DBH decreased with the decline of tree vitality. Our results suggested that it might be able to differentiate degraded P. euphratica trees from healthy trees by determining the height-diameter correlation coefficient, and the coefficient would be a new parameter for detecting degradation and assessing sustainable management of floodplain forests in arid regions. In addition, tree vitality should be taken into account to make an accurate height-diameter model for tree height prediction.
文摘A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.
文摘When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements.
基金Project(06JJ5080) supported by the Hunan Natural Science Foundation of ChinaProject(05026B) supported by the Young Science Foundation of Central South University of Forestry and Technology
文摘In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model of elastoplastic stability of high pier.By considering the combined action of pile,soil and pier together,the destabilization bearing capacity was calculated by using 3-D finite element method(3-D FEM) for piers with different pile and section height.Meanwhile,the equivalent stress in different sections of pier was computed and the processor of destabilization was discussed.When the pier is lower,the bearing capacity under mutual effect of pile,soil and pier is less than the situation when mutual effect is not considered;when the pier is higher,their differences are not conspicuous.Along with the increase of the cross-sectional height,the direction of destabilization bearing capacity is varied and the ultimate capacity is buildup.The results of a stability analysis example are almost identical with the practice.
基金Project (No. 9040831) supported by the Hong Kong Research GrantCouncil, China
文摘The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilib-rium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.
基金The experimental program would not have been possible without the funding by the 100-Year Foundation of the Federation of Finnish Technology Industries and the Scientific Advisory Board for Defense.The analyses were carried out in project called Ultra Lightweight and Fracture Resistant Thin-Walled Structures through Optimization of Strain Paths,by the Academy of Finland(310828).This work was also supported by the Estonian Research Council grant PSG526.
文摘This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.
基金Project supported by National Natural Science Foundation of China
文摘A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower limits for the bifurcating point in a whole linear elastic structural system,as well as an ap- proximate solution to asymptotic post-buckling problem.Some numerical examples are included.
基金Dalian Innovation Foundation of Science and Technology(2018J11CY005)State Key Laboratory of Structural Analysis for Industrial Equipment(S18313)are gratefully acknowledged.
文摘Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.
文摘In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.
文摘This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.
基金funded by USDA National Institute of Food and Agriculture Hatch Appropriations[#PEN04639,Accession#1015105,EZ]。
文摘Managing mature Douglas-fir[Pseudotsuga menziesii(Mirb.)Franco]stands to emulate the structural complexity of natural old-growth forest requires identifying structural targets at the sub-stand level at which neighborhood dynamics and patchy disturbance shape structure.We therefore sought to describe the archetypal shapes of predominant sub-stand diameter distribution types(DDTs)observed in natural tree neighborhoods in stands comprising a chronosequence(ca.120-450+yrs)encompassing mature,vertical diversification,and horizontal diversification development stages.The ten 1.0 ha stands are located in the southcentral Oregon Cascades,USA.Building on the known spatial position of each tree,natural tree neighborhoods were identified using the floating neighborhood approach based on spatial tessellation connecting neighboring trees at the first-(mean 61 m2)through fifth-(mean 2058 m2)order scales.Cluster analysis was then used to objectively identify the most predominant DDTs among the relative tree size distributions observed in the trans-scale neighborhoods within each stand.Repeated measures regression was used to classify each DDT to one of six observed archetypal shapes:negative exponential,unimodal,rotated sigmoid,bimodal,concave,or multi-modal.Only three of the 81 observed DDTs deviated by<10%from the stand average,while every stand had at least one DDT that deviated by>50%(maximum 83%).Within each stand,five to ten predominant DDTs were observed,which deviated from the stand average by 30-48%and were characterized by two to five different archetypal shapes.Consequently,in some stands the majority of tree neighborhoods were best characterized by a different shape from that assigned at the stand level.Deviation from the stand average increased from the youngest stand in the mature development stage through the middle stands in the vertical diversification stage to the oldest stands in the horizontal diversification stage.The complexity of DDT shapes tended to increase along the chronosequence(from negative exponential and uniform toward concave and multi-modal),with shape richness highest mid-sequence and evenness peaking in the oldest stands.The high diversity of sub-stand structural complexity reduces the utility of standlevel diameter distributions as old-growth restoration targets.However,the presence in early-sequence stands of sub-stand diameter distributions common to later-sequence stands may facilitate active management at the neighborhood level to promote future old-growth condition.Restoration of substand diameter structures would likely require combining spatial perspectives,such as by augmenting tree-level croptree management with diameter distribution targets for the resulting tree neighborhoods.
基金Support was provided by the New Hampshire Agricultural Experiment Station.This is Scientific Contribution Number 2978supported by the USDA National Institute of Food and Agriculture,McIntire-Stennis Project 7003549
文摘Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and economic potential.However,quadratic mean diameter can be heavily influenced by the presence or absence of large numbers of small stems in lower canopy strata,and it is also sensitive to left-truncation of the diameter distribution,making its interpretation across inventories with different protocols challenging.Here,we examine three alternative expressions of stand diameter:the arithmetic and quadratic mean diameter of the thickest 100 trees per hectare,and the basal area-weighted mean diameter.Using data from the United States Forest Inventory and Analysis program for New York and New England,these alternative expressions showed closer correlation with multiple stand structural variables than did quadratic mean diameter,including merchantable cubic and board foot volume per hectare,aboveground live tree carbon per hectare,and total number of live and dead standing trees greater than 40 cm diameter at breast height per hectare(previously proposed as an index of old-growth structure).Arithmetic and quadratic mean diameter of the thickest 100 trees per hectare showed nearly identical performance,and the strongest correlations across the board.We develop closed-form expressions for these variables when the diameter distribution is a Weibull,and illustrate their behavior relative to quadratic mean diameter for that situation.While the reasons for prevalence of quadratic mean diameter as an indicator remain valid,we suggest that these alternative measures should be more widely reported and analyzed to give a more informative depiction of stand structure and development in complex forests.
基金Supported by Special Fund for Basic Research in National Non-profit Scientific Research Institute(Chinese Academy of Agricultural Sciences,Lanzhou Animal Husbandry and Veterinary Research Institute)(1610322012010)~~
文摘[Objective] The paper was to explore the microscopic structure of rabbit hair. [Method] Single rabbit hair with typical features was selected to observe its mi- croscopic structure from tip to root, and its fiber diameter was also measured. [Result] The rabbit hair tip was constituted by scale layer and cortical layer, without medullary layer; the middle part was generally constituted by scale layer, cortical layer and medullary layer; the root had no medullary layer, and the scale layer was wheatear-shaped. This was the property of rabbit hair, which could be used for comparative studies with other animal fiber and species identification. Rabbit hair had developed medullary layer, and fiber diameter was positively related to column number of medullary cavity. The hair generally was single column, and coarse hair was multi-column. Single rabbit hair was the finest in the tip, coarse in the middle and tapering in the root. The diameter difference of various parts was large, and the ex- ternal growth characteristics was spindle-shaped. [Conclusion] Using biological micro- scope method to identify different animal fur and product species is more objective and simple.