Electromagnetic(EM) load is one of the key design drivers for the blanket shield block(SB) and other in-vessel components. In this article, an EM analysis method was developed to address the EM force on the SB. Th...Electromagnetic(EM) load is one of the key design drivers for the blanket shield block(SB) and other in-vessel components. In this article, an EM analysis method was developed to address the EM force on the SB. The plasma currents, which vary spatially and temporally,are loaded as a filament at each time point. The standard blanket module No.04(BM04) under major disruption(MD) is selected to perform the analyses. The analyses results are validated by comparing currents on the passive structure. To better understand the effects of cooling channels and slits on the EM force, the case of SB without cooling channel and the case without slits are calculated to make comparisons. The results show that the slits play an important role in controlling the EM load on SB.展开更多
In this study,NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak.It is demonstrated in simulations that two different scenarios ...In this study,NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak.It is demonstrated in simulations that two different scenarios of plasma cooling(complete cooling and partial cooling)take place for different amounts of injected impurities.For the impurity injection above a critical level,a single MHD activity is able to induce a complete core temperature collapse.For impurity injection below the critical level,a series of multiple minor disruptions occur before the complete thermal quench.展开更多
In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron(RE). Motivated by th...In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron(RE). Motivated by the experiment of multimode coupling to suppress REs on J-TEXT, some typical simulation cases with non-ideal MHD with rotation-open discussion(NIMROD) code are carried out to explore the influential mechanism of different relative phases between m/n =2/1 and m/n = 3/1 magnetic islands on the confinement of REs. Results show that the RE confinement is drastically affected by the relative phase between 2/1 and 3/1 magnetic islands. When the O point phase of 2/1 and 3/1 magnetic islands is toroidal 330°, REs can be effectively lost. The fitting curve of the remaining ratio of REs vs. the relative toroidal phase is predicted to approximate a sine-like function dependence. Further studies indicate that the phase difference between coexisting 2/1 and 3/1 islands can affect the radial transport of impurities. The loss of runaway electrons is closely related to the deposition effect of impurity. The impurity is easier to spread into the core region with smaller poloidal phase difference between the radial velocity of impurity and the impurity quantity of Ar.展开更多
基金supported partially by the National Magnetic Confinement Fusion Science Program of China(No.2008GB106000)
文摘Electromagnetic(EM) load is one of the key design drivers for the blanket shield block(SB) and other in-vessel components. In this article, an EM analysis method was developed to address the EM force on the SB. The plasma currents, which vary spatially and temporally,are loaded as a filament at each time point. The standard blanket module No.04(BM04) under major disruption(MD) is selected to perform the analyses. The analyses results are validated by comparing currents on the passive structure. To better understand the effects of cooling channels and slits on the EM force, the case of SB without cooling channel and the case without slits are calculated to make comparisons. The results show that the slits play an important role in controlling the EM load on SB.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2019YFE03050004)National Natural Science Foundation of China(Nos.11775221 and 51821005)+1 种基金US DOE(Nos.DEFG02-86ER53218 and DESC0018001)the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology(No.2019kfyXJJS193).
文摘In this study,NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak.It is demonstrated in simulations that two different scenarios of plasma cooling(complete cooling and partial cooling)take place for different amounts of injected impurities.For the impurity injection above a critical level,a single MHD activity is able to induce a complete core temperature collapse.For impurity injection below the critical level,a series of multiple minor disruptions occur before the complete thermal quench.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12175078 and 51821005)
文摘In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron(RE). Motivated by the experiment of multimode coupling to suppress REs on J-TEXT, some typical simulation cases with non-ideal MHD with rotation-open discussion(NIMROD) code are carried out to explore the influential mechanism of different relative phases between m/n =2/1 and m/n = 3/1 magnetic islands on the confinement of REs. Results show that the RE confinement is drastically affected by the relative phase between 2/1 and 3/1 magnetic islands. When the O point phase of 2/1 and 3/1 magnetic islands is toroidal 330°, REs can be effectively lost. The fitting curve of the remaining ratio of REs vs. the relative toroidal phase is predicted to approximate a sine-like function dependence. Further studies indicate that the phase difference between coexisting 2/1 and 3/1 islands can affect the radial transport of impurities. The loss of runaway electrons is closely related to the deposition effect of impurity. The impurity is easier to spread into the core region with smaller poloidal phase difference between the radial velocity of impurity and the impurity quantity of Ar.