The inheritance of stripe disease resistance in a rice restorer line C224 was analyzed using the mixed effect model of major gene plus polygene for quantitative traits.In addition,the resistance was investigated in se...The inheritance of stripe disease resistance in a rice restorer line C224 was analyzed using the mixed effect model of major gene plus polygene for quantitative traits.In addition,the resistance was investigated in seven crosses of C224 with maintainer lines.The results showed that the stripe resistance of C224 was controlled by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance effects (E-1 model).These two genes had additive effects of-12.47% and-24.75%,respectively,showing negative dominance effects.There were significant epistasis and interaction effects between the two major genes.The heritability of the two major genes was 92.12%,while that of polygenes was 2.74%,indicating that the stripe resistance had dominant major gene effect.Of the seven crosses,five displayed high or medium resistance to the stripe disease.展开更多
Inheritance of line Jinghe891-l resistant to pathotype of Puccinia striiformis in two patterns of temperature (Normal: day 18℃ /night 10℃ , High: day 24℃ /night 15℃ )was studied in this paper. The results showed t...Inheritance of line Jinghe891-l resistant to pathotype of Puccinia striiformis in two patterns of temperature (Normal: day 18℃ /night 10℃ , High: day 24℃ /night 15℃ )was studied in this paper. The results showed that there were at least two pairs of dominant major genes and one pair of recessive minor genes in Jinghe 891-1. The two pairs of major genes that conferred resistance to CY31 were allelic or linked closely with resistance gene in Jubilejna Ⅱ , Kangyin655 and T. spelta Album. They were novel resistance genes and were inherited in a repeated or independent mode. The minor genes, which could modify the major genes, were sensitive to temperature and conferred resistance to all pathotypes of Puccinia striiformis in China. It is recommended that this line can be used as an important resource stock.展开更多
[Objective] This study aimed to investigate the prevalence and variation of porcine kobuvirus (PKV) in suckling piglets in China. [Method] In 2013-2014, 224 feces samples from suckling piglets with diarrhea in 27 pi...[Objective] This study aimed to investigate the prevalence and variation of porcine kobuvirus (PKV) in suckling piglets in China. [Method] In 2013-2014, 224 feces samples from suckling piglets with diarrhea in 27 pig farms of five provinces in China were collected to detect 3D genes of PKV with RT-PCR method; the sequences and genetic variation of 29 PKV 3D genes were analyzed. [Result] Total positive rate of PKV in feces samples from suckling piglets with diarrhea was 65.18% (146/224); total positive rate of PKV in pig farms was 85,2% (23/27); nucleotide sequences and the deduced amino acid sequences of 29 PKV 3D genes shared 87.0%-100% and 92.7%-100% homologies with six PKV-related 3D sequences, respectively. [Conclusion] PKV infection is prevalent in suckling piglets in China; PKV 3D genes exhibit high diversity.展开更多
Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-ef...Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-effective approach to controlling this disease. In this study, 127 soybean germplasm were evaluated for their responses to Phytophthora sojae strain Pm28 using the hypocotyl inoculation technique, and 49 were found resistant to the strain. The hypocotyl of P1, P2, F1, and F2:3 of two crosses of Ludou 4 (resistant)×Youchu 4 (susceptible) and Cangdou 5 (resistant)×Williams (susceptible) were inoculated with Pm28, and were used to analyze the inheritance of resistance. The population derived from the cross of Ludou 4×Youchu 4 was used to map the resistance gene (designated as Rps9) to a linkage group. 932 pairs of SSR primers were used to detect polymorphism, and seven SSR markers were mapped near the resistance gene. The results showed that the resistance to Pm28 in Ludou 4 and Cangdou 5 was controlled by a single dominant gene Rps9, which was located on the molecular linkage group N between the SSR markers Satt631 (7.5 cM) and Sat_186 (4.3 cM).展开更多
A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longe...A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chill(t).展开更多
To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui ...To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui 527, Mianhui 725, Fuhui 838 and Yixiang 1B. Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene. Thus, the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S. By using SSR markers, the PGMS gene of Mian 9S was mapped on one side of the markers, RM6659 and RM1305, on rice chromosome 4, with the genetic distances of 3.0 cM and 3.5 cM, respectively. The gene was a novel PGMS gene and designated tentatively as pms4. In addition, the application of the pms4 gene was discussed.展开更多
A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that t...A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TW(H). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.展开更多
Genetic models are proposed for analyzing sex-linked and maternal effects as well as autosomal gene effects.For the model with no genotype×environment interaction,the total genetic effect is partitioned into dire...Genetic models are proposed for analyzing sex-linked and maternal effects as well as autosomal gene effects.For the model with no genotype×environment interaction,the total genetic effect is partitioned into direct additive (A),direct dominance (D),sexlinked (L),maternal additive (Am) and maternal dominance (Dm) genetic components.For the model including genotype×environment interaction (GE),GE can also be partitioned into components of direct additive by environment interaction (AE),direct dominance by environment interaction (DE),sex-linked by environment interaction (LE),maternal additive by environment interaction (AmE ),and maternal dominance by environment interaction (DmE).Linear functions of genetic components are listed for parent,F1,and F2.A set of parents,their reciprocal F1’s and F2’s is applicable for efficient analysis.Variance and covariance components can be well mated by MINQUE(O/l) with the jackknife procedure.The t-test conducted by the jackknife procedure is applicable for detecting significance of variation.Adjusted Unbiased Prediction (AUP) method is suggested for predicting genetic effects.展开更多
The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to ...The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to turn slight-red when the roots were exposed to the light at the intensity of 29 )Jmol/(m^2·s), then turned dark-red at the light intensity of 180 pmol/(m^2·s), suggesting that the root color of the mutant was evidently sensitive to light. Furthermore, genetic analysis showed that the character of light-sensitive red-root of the HG1 mutant was controlled by a single dominant gene, tentatively designated as Lsr. With simple sequence repeat markers, Lsrgene was located between the markers RM252 and RM303 on chromosome 4 with the genetic distances of 9.8 cM and 6.4 cM, respectively. These results could be useful for fine mapping and cloning of Lsrgene in rice.展开更多
A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tille...A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.展开更多
Soybean mosaic virus (SMV) could lead to adult-plant system diseases, and cause mottling of soybean seeds. Genetic analysis and molecular mapping were conducted using an F2 population and derived F3 families from tw...Soybean mosaic virus (SMV) could lead to adult-plant system diseases, and cause mottling of soybean seeds. Genetic analysis and molecular mapping were conducted using an F2 population and derived F3 families from two crosses of Dongnong 3C624 (susceptible)x Dongnong 8143 (resistant) and Dongnong 3C628 (susceptible)× Tie 6915 (resistant). Simple sequence repeat (SSR) markers with bulked segregation analysis (BSA) were used to conduct genetic mapping of the resistance to SMV1 in the segregating populations. The results indicated that resistance to SMV1 in adultplants and the resistance to seed coat mottling in Dongnong 8143 and Tie 6915 was separately controlled by one single dominant gene. The two dominant genes were identified to be linked on the MLG F by Mendel's genetics and SSR genetic mapping. The order and distance of markers DPRSMV1 and DSRSMV1 were Sat 229-6.9 cM-DSRSMV1-4.6 cM-Sat_317-3.6 cM-DPRSMV1-5.2 cM-Satt335. The order and distance of markers TPRSMV1 and TSRSMV1 was Satt160-16.1 cM-TPRSMV1-7.3 cM-Satt516-2.0 cM-TSRSMV1-4.5 cM-Sat_133. This research provides the useful information for breeders to select the two types of SMV resistance simultaneously in soybean breeding through molecular marker-assisted selection (MAS).展开更多
Grain size, determined chiefly by grain length, is one of the main factors affecting the grain yield in rice production. To study the trait of rice grain size, F1 and F2 populations were developed from crosses Shuhui ...Grain size, determined chiefly by grain length, is one of the main factors affecting the grain yield in rice production. To study the trait of rice grain size, F1 and F2 populations were developed from crosses Shuhui 881/Y34 and Shuhui 527/Y34, and genetic analysis for minute grain was performed. The F1 populations showed minute grains, and grain size segregations in the two F2 populations were both in accordance with the ratio of 3:1, indicating that minute grain in Y34 was controlled by a completely dominant gene. By using the F2 population from Shuhui 881/Y34, this dominant gene, tentatively designated as Mi3(t), was mapped based on SSR markers in the interval between RM282 (genetic distance of 5.1 cM) and RM6283 (genetic distance of 0.9 cM) on the short arm of chromosome 3.展开更多
Resistance to rice gall midge in rice germplasm 91-1A2 was identified and genetically analyzed F1s of rice population were derived from 91-1A2 which crossed with rice materials Jinggui, TN1, W1263 (Gm1), IET2911 (...Resistance to rice gall midge in rice germplasm 91-1A2 was identified and genetically analyzed F1s of rice population were derived from 91-1A2 which crossed with rice materials Jinggui, TN1, W1263 (Gm1), IET2911 (Gm2), BG404-1 (gm3), OB677 (Gm4), ARC5984 (Gm5) and Duokang 1 (Gm6) as a male parent. The resistance of all parental lines and F1, BC1F1 and F2 populations to rice gall midge was identified. The results showed that 91-1A2 and all F1s were resistant to Chinese rice gall midge biotype IV. The segregation ratio of resistant plants to susceptible ones in BC1F1 and F2 were accorded with 1:3 and 9:7 rules by X2 test, suggesting that the resistance of 91-1A2 to Chinese rice gall midge biotype IV was controlled by two dominant genes which were new resistance genes, non-allelic to the known rice gall midge resistance genes.展开更多
Feline calicivirus(FCV)is an important feline pathogen mainly causing upper respiratory tract disease,conjunctivitis,and stomatitis,and it is classifed into genotype I and genotype II.To investigate the prevalence and...Feline calicivirus(FCV)is an important feline pathogen mainly causing upper respiratory tract disease,conjunctivitis,and stomatitis,and it is classifed into genotype I and genotype II.To investigate the prevalence and molecular characteristics of FCV,this study collected 337 cat swab samples from animal hospitals in diferent regions of China from 2019 to 2021.The positive detection rate of FCV was 29.9%(101/337)by RT-PCR.Statistical analysis showed that FCV prevalence was signifcantly associated with living environment(p=0.0004),age(p=0.031)and clinical symptoms(p=0.00),but not with sex(p=0.092)and breed(p=0.171).The 26 strains of FCV were isolated using F81 cells.Phylogenetic analysis showed that 10 isolates belonged to genotype I,and 16 isolates belonged to genotype II.These 26 isolates were highly genetically diverse,of which HB7 isolate had three same virulence-related amino acid loci with VSD strains.Potential loci distinguishing diferent genotypes were identifed from 26 isolates,suggesting the genetic relationship between diferent genotypes.In addition,selection pressure analysis based on capsid protein of 26 isolates revealed that the protein is under diversifying selection.This study reveals the genetic diversity of FCV and provides a reference for the screening of vaccine candidate strains and the development of vaccines with better cross-protection efects.展开更多
Objective:To summarize the precise association between pulmonary tuberculosis(PTB) and P2x7 A1513 C gene polymorphism.Methods:PubMed and Google Scholar web-databases were searched for the studies reporting the associa...Objective:To summarize the precise association between pulmonary tuberculosis(PTB) and P2x7 A1513 C gene polymorphism.Methods:PubMed and Google Scholar web-databases were searched for the studies reporting the association of P2x7 A1513 C polymorphism and PTB risk.A meta-analysis was performed for the selected case-control studies and pooled odds ratios(ORs) and 95%confidence intervals(95%CIs) were calculated for all the genetic models.Results:Eleven studies comprising 2 678 controls and 2 113 PTB cases were included in this meta-analysis.We observed overall no significant risk in all the five genetic models.When stratified population by the ethnicity,Caucasian population failed to show any risk of PTB in all the genetics models.In Asian ethnicity,variant allele(C vs.A:P=0.001;QR=1.375,95%CI=1.159-1.632) and heterozygous genotype(AC vs.AA:P=0.001;OR=1.570,95%CI=1.269-1.944) demonstrated significant increased risk of PTB.Likewise,recessive genetic model(CC+AC vs.AA:P=0.001;OR=1.540,95%CI= 1.255-1.890) also demonstrated increased risk of PTB in Asians.Conclusions:Our meta-analysis did not suggest the association of P2x7 A1513 C polymorphism with PTB risk in overall or separately in Caucasian population.However,it plays a significant risk factor for predisposing PTB in Asians.Future larger sample and expression studies are needed to validate this association.展开更多
A spontaneous mutation, tentatively named d63, was derived from the twin-seedling progenies of rice crossed by diploid SARIII and Minghui 63. Compared with wild-type plants, the d63 mutant showed multiple abnormal phe...A spontaneous mutation, tentatively named d63, was derived from the twin-seedling progenies of rice crossed by diploid SARIII and Minghui 63. Compared with wild-type plants, the d63 mutant showed multiple abnormal phenotypes, such as dwarfism, more tillers, smaller flag leaf and reduced seed-setting rate and 1000-grain weight. In this study, two F2 populations were developed by crossing between d63 and Nipponbare, d63 and 93-11. Genetic analysis indicated that d63 was controlled by a single recessive gene, which was located on the short arm of chromosome 8, within the genetic distance of 0.40 cM from RM22195. Hence, D63 might be a new gene as there are no dwarf genes reported on the short arm of chromosome 8.展开更多
Genetic linkage relationship of the natural colored fiber and six fuzzless seed germplasms in obsolete backgrounds of Gossypium hirsutum(AD genome) and G.barbadense were analyzed in the
Genetic diversity evaluation of mutant lines is essential to facilitate their conservation and utility in breeding programs. Characterization of plant genotypes using morphological markers has limitations which make t...Genetic diversity evaluation of mutant lines is essential to facilitate their conservation and utility in breeding programs. Characterization of plant genotypes using morphological markers has limitations which make the procedure inefficient. Application of molecular tools for characterization and diversity assessment has been found useful to complement phenotypic evaluation of plant population. Therefore genetic diversity of some cowpea mutant lines was studied using simple sequence repeats (SSR) markers. DNA barcoding marker, ribulose-1,5-bisphosphate carboxylase(rbcL) of the chloroplast DNA (cpDNA) was also used for characterization and identification of the mutants to species level. The mean polymorphic information content (0.51) obtained from the microsatellites showed high polymorphism in accessing wide genetic diversity among the mutants and their parents. Dendrogram generated revealed 8 groups with most mutants clustered separately from their parents. Sequence analysis revealed insertions/deletions (InDels) and base substitutions as the two main classes of mutations induced in the plastid DNA of the mutants studied. The nucleotide frequencies were 26.95% (A), 34.43% (T), 24.09% (C) and 14.53% (G). A total of 61.38% AT rich region was identified, while GC rich region was found to be 38.62%. Highest rate of mutations were observed in region 3 - 4 indicating that the region is less conserved in cowpea rbcL gene. The present study proved that SSR markers are useful for the genetic diversity assessment of cowpea mutants. It also proved the efficiency of rbcL markers in mutants’ identification. The results indicate that the mutants are valuable genetic resources that have been developed to widen cowpea genetic base.展开更多
A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populati...A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populations were constructed by crossing with indica cultivars TN1 and Zhefu 802,respectively.Genetic analysis demonstrated that the phenotype was controlled by a single recessive nuclear gene.The closely linked simple sequence repeat(SSR) marker RM1155 was obtained from bulked segregant analysis.Subsequently,sequence tagged site(STS) markers were developed using the published rice genome sequence.Finally,RTL1 was located between an STS marker T1591 and an SSR marker RM1359,at the distances of 0.48 cM and 0.96 cM,respectively.These results will facilitate the cloning of the target gene in further studies.展开更多
[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1...[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.展开更多
基金supported by the Guiding Plans for Natural Sciences Foundation of Liaoning Province,China(Grant No.20092207)the Special Foundation for Young Scientists of Liaoning Rice Research Institute,Shenyang,China(Grant No.DZS-2008-1)
文摘The inheritance of stripe disease resistance in a rice restorer line C224 was analyzed using the mixed effect model of major gene plus polygene for quantitative traits.In addition,the resistance was investigated in seven crosses of C224 with maintainer lines.The results showed that the stripe resistance of C224 was controlled by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance effects (E-1 model).These two genes had additive effects of-12.47% and-24.75%,respectively,showing negative dominance effects.There were significant epistasis and interaction effects between the two major genes.The heritability of the two major genes was 92.12%,while that of polygenes was 2.74%,indicating that the stripe resistance had dominant major gene effect.Of the seven crosses,five displayed high or medium resistance to the stripe disease.
基金supported by the Beijing Natural Science Foundation(6962006).
文摘Inheritance of line Jinghe891-l resistant to pathotype of Puccinia striiformis in two patterns of temperature (Normal: day 18℃ /night 10℃ , High: day 24℃ /night 15℃ )was studied in this paper. The results showed that there were at least two pairs of dominant major genes and one pair of recessive minor genes in Jinghe 891-1. The two pairs of major genes that conferred resistance to CY31 were allelic or linked closely with resistance gene in Jubilejna Ⅱ , Kangyin655 and T. spelta Album. They were novel resistance genes and were inherited in a repeated or independent mode. The minor genes, which could modify the major genes, were sensitive to temperature and conferred resistance to all pathotypes of Puccinia striiformis in China. It is recommended that this line can be used as an important resource stock.
文摘[Objective] This study aimed to investigate the prevalence and variation of porcine kobuvirus (PKV) in suckling piglets in China. [Method] In 2013-2014, 224 feces samples from suckling piglets with diarrhea in 27 pig farms of five provinces in China were collected to detect 3D genes of PKV with RT-PCR method; the sequences and genetic variation of 29 PKV 3D genes were analyzed. [Result] Total positive rate of PKV in feces samples from suckling piglets with diarrhea was 65.18% (146/224); total positive rate of PKV in pig farms was 85,2% (23/27); nucleotide sequences and the deduced amino acid sequences of 29 PKV 3D genes shared 87.0%-100% and 92.7%-100% homologies with six PKV-related 3D sequences, respectively. [Conclusion] PKV infection is prevalent in suckling piglets in China; PKV 3D genes exhibit high diversity.
基金supported by the Earmarked Fund for Modern Agro-Industry Technology Research System, China (nyhyzx07-053)the Program for Changjiang Scholars and Innovative Research Team in University, China (PCSIRT)the Research Fund for the Doctoral Program of Higher Education of China (20090097120023)
文摘Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-effective approach to controlling this disease. In this study, 127 soybean germplasm were evaluated for their responses to Phytophthora sojae strain Pm28 using the hypocotyl inoculation technique, and 49 were found resistant to the strain. The hypocotyl of P1, P2, F1, and F2:3 of two crosses of Ludou 4 (resistant)×Youchu 4 (susceptible) and Cangdou 5 (resistant)×Williams (susceptible) were inoculated with Pm28, and were used to analyze the inheritance of resistance. The population derived from the cross of Ludou 4×Youchu 4 was used to map the resistance gene (designated as Rps9) to a linkage group. 932 pairs of SSR primers were used to detect polymorphism, and seven SSR markers were mapped near the resistance gene. The results showed that the resistance to Pm28 in Ludou 4 and Cangdou 5 was controlled by a single dominant gene Rps9, which was located on the molecular linkage group N between the SSR markers Satt631 (7.5 cM) and Sat_186 (4.3 cM).
文摘A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chill(t).
基金the Crop Breeding Program of Sichuan Province (Grant No. 2006YZGG01)Pre-grant from Youth Science & Technology Foundation of Sichuan Province (Grant No. 07ZQ026-126)
文摘To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui 527, Mianhui 725, Fuhui 838 and Yixiang 1B. Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene. Thus, the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S. By using SSR markers, the PGMS gene of Mian 9S was mapped on one side of the markers, RM6659 and RM1305, on rice chromosome 4, with the genetic distances of 3.0 cM and 3.5 cM, respectively. The gene was a novel PGMS gene and designated tentatively as pms4. In addition, the application of the pms4 gene was discussed.
基金supported by the Program for the Agricultural Science and Technology Innovation of Hubei Province, China (Grant No. 2007-620-001-03)
文摘A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TW(H). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.
文摘Genetic models are proposed for analyzing sex-linked and maternal effects as well as autosomal gene effects.For the model with no genotype×environment interaction,the total genetic effect is partitioned into direct additive (A),direct dominance (D),sexlinked (L),maternal additive (Am) and maternal dominance (Dm) genetic components.For the model including genotype×environment interaction (GE),GE can also be partitioned into components of direct additive by environment interaction (AE),direct dominance by environment interaction (DE),sex-linked by environment interaction (LE),maternal additive by environment interaction (AmE ),and maternal dominance by environment interaction (DmE).Linear functions of genetic components are listed for parent,F1,and F2.A set of parents,their reciprocal F1’s and F2’s is applicable for efficient analysis.Variance and covariance components can be well mated by MINQUE(O/l) with the jackknife procedure.The t-test conducted by the jackknife procedure is applicable for detecting significance of variation.Adjusted Unbiased Prediction (AUP) method is suggested for predicting genetic effects.
基金supported by the Shanghai Municipal Education Commission of China (Grant No. 06ZZ21)Shanghai Municipal Science and Technology Commission of China (Grant Nos. 06PJ14074, 075405117 and 08PJ14085)the 948 Program from Ministry of Agriculture, China (Grant No. 2006-G1)
文摘The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to turn slight-red when the roots were exposed to the light at the intensity of 29 )Jmol/(m^2·s), then turned dark-red at the light intensity of 180 pmol/(m^2·s), suggesting that the root color of the mutant was evidently sensitive to light. Furthermore, genetic analysis showed that the character of light-sensitive red-root of the HG1 mutant was controlled by a single dominant gene, tentatively designated as Lsr. With simple sequence repeat markers, Lsrgene was located between the markers RM252 and RM303 on chromosome 4 with the genetic distances of 9.8 cM and 6.4 cM, respectively. These results could be useful for fine mapping and cloning of Lsrgene in rice.
基金supported by the grants from the National High Technology Research and Development Program of China(Grant No.2011AA10A101)the Natural Science Foundation of Zhejiang Province of China(Grant No.Y12C13003)the National Natural Science Foundation of China(Grant No.31201193)
文摘A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.
基金supported by the National Natural Science Foundation of China (30871551)the National 973 Program of China (2004CB117203-5)+1 种基金the National 863 Program of China (2006AA100104-3)the National 948 Project of China (2006-G1A)
文摘Soybean mosaic virus (SMV) could lead to adult-plant system diseases, and cause mottling of soybean seeds. Genetic analysis and molecular mapping were conducted using an F2 population and derived F3 families from two crosses of Dongnong 3C624 (susceptible)x Dongnong 8143 (resistant) and Dongnong 3C628 (susceptible)× Tie 6915 (resistant). Simple sequence repeat (SSR) markers with bulked segregation analysis (BSA) were used to conduct genetic mapping of the resistance to SMV1 in the segregating populations. The results indicated that resistance to SMV1 in adultplants and the resistance to seed coat mottling in Dongnong 8143 and Tie 6915 was separately controlled by one single dominant gene. The two dominant genes were identified to be linked on the MLG F by Mendel's genetics and SSR genetic mapping. The order and distance of markers DPRSMV1 and DSRSMV1 were Sat 229-6.9 cM-DSRSMV1-4.6 cM-Sat_317-3.6 cM-DPRSMV1-5.2 cM-Satt335. The order and distance of markers TPRSMV1 and TSRSMV1 was Satt160-16.1 cM-TPRSMV1-7.3 cM-Satt516-2.0 cM-TSRSMV1-4.5 cM-Sat_133. This research provides the useful information for breeders to select the two types of SMV resistance simultaneously in soybean breeding through molecular marker-assisted selection (MAS).
基金National High Technology Research and Development Program of China(2003AA212030).
文摘Grain size, determined chiefly by grain length, is one of the main factors affecting the grain yield in rice production. To study the trait of rice grain size, F1 and F2 populations were developed from crosses Shuhui 881/Y34 and Shuhui 527/Y34, and genetic analysis for minute grain was performed. The F1 populations showed minute grains, and grain size segregations in the two F2 populations were both in accordance with the ratio of 3:1, indicating that minute grain in Y34 was controlled by a completely dominant gene. By using the F2 population from Shuhui 881/Y34, this dominant gene, tentatively designated as Mi3(t), was mapped based on SSR markers in the interval between RM282 (genetic distance of 5.1 cM) and RM6283 (genetic distance of 0.9 cM) on the short arm of chromosome 3.
基金supported by the Natural Science Foundation of Guangxi Province (Grant No.0007015)Science Research and Technology Development Program of Guangxi Province (Grant Nos.0012027 and 9939006)Foundation of New Century Ten-Hundred-Thous and Talents of Guangxi,China (Grant No. 2003213)
文摘Resistance to rice gall midge in rice germplasm 91-1A2 was identified and genetically analyzed F1s of rice population were derived from 91-1A2 which crossed with rice materials Jinggui, TN1, W1263 (Gm1), IET2911 (Gm2), BG404-1 (gm3), OB677 (Gm4), ARC5984 (Gm5) and Duokang 1 (Gm6) as a male parent. The resistance of all parental lines and F1, BC1F1 and F2 populations to rice gall midge was identified. The results showed that 91-1A2 and all F1s were resistant to Chinese rice gall midge biotype IV. The segregation ratio of resistant plants to susceptible ones in BC1F1 and F2 were accorded with 1:3 and 9:7 rules by X2 test, suggesting that the resistance of 91-1A2 to Chinese rice gall midge biotype IV was controlled by two dominant genes which were new resistance genes, non-allelic to the known rice gall midge resistance genes.
基金supported by the National Natural Science Foundation of China(NSFC):(Grant No.32002268)the China Postdoctoral Science Foundation(Grant No.2019M662677)the Wuhan 3551 Optics Valley Talent Program and the Wuhan Talent Program.
文摘Feline calicivirus(FCV)is an important feline pathogen mainly causing upper respiratory tract disease,conjunctivitis,and stomatitis,and it is classifed into genotype I and genotype II.To investigate the prevalence and molecular characteristics of FCV,this study collected 337 cat swab samples from animal hospitals in diferent regions of China from 2019 to 2021.The positive detection rate of FCV was 29.9%(101/337)by RT-PCR.Statistical analysis showed that FCV prevalence was signifcantly associated with living environment(p=0.0004),age(p=0.031)and clinical symptoms(p=0.00),but not with sex(p=0.092)and breed(p=0.171).The 26 strains of FCV were isolated using F81 cells.Phylogenetic analysis showed that 10 isolates belonged to genotype I,and 16 isolates belonged to genotype II.These 26 isolates were highly genetically diverse,of which HB7 isolate had three same virulence-related amino acid loci with VSD strains.Potential loci distinguishing diferent genotypes were identifed from 26 isolates,suggesting the genetic relationship between diferent genotypes.In addition,selection pressure analysis based on capsid protein of 26 isolates revealed that the protein is under diversifying selection.This study reveals the genetic diversity of FCV and provides a reference for the screening of vaccine candidate strains and the development of vaccines with better cross-protection efects.
文摘Objective:To summarize the precise association between pulmonary tuberculosis(PTB) and P2x7 A1513 C gene polymorphism.Methods:PubMed and Google Scholar web-databases were searched for the studies reporting the association of P2x7 A1513 C polymorphism and PTB risk.A meta-analysis was performed for the selected case-control studies and pooled odds ratios(ORs) and 95%confidence intervals(95%CIs) were calculated for all the genetic models.Results:Eleven studies comprising 2 678 controls and 2 113 PTB cases were included in this meta-analysis.We observed overall no significant risk in all the five genetic models.When stratified population by the ethnicity,Caucasian population failed to show any risk of PTB in all the genetics models.In Asian ethnicity,variant allele(C vs.A:P=0.001;QR=1.375,95%CI=1.159-1.632) and heterozygous genotype(AC vs.AA:P=0.001;OR=1.570,95%CI=1.269-1.944) demonstrated significant increased risk of PTB.Likewise,recessive genetic model(CC+AC vs.AA:P=0.001;OR=1.540,95%CI= 1.255-1.890) also demonstrated increased risk of PTB in Asians.Conclusions:Our meta-analysis did not suggest the association of P2x7 A1513 C polymorphism with PTB risk in overall or separately in Caucasian population.However,it plays a significant risk factor for predisposing PTB in Asians.Future larger sample and expression studies are needed to validate this association.
文摘A spontaneous mutation, tentatively named d63, was derived from the twin-seedling progenies of rice crossed by diploid SARIII and Minghui 63. Compared with wild-type plants, the d63 mutant showed multiple abnormal phenotypes, such as dwarfism, more tillers, smaller flag leaf and reduced seed-setting rate and 1000-grain weight. In this study, two F2 populations were developed by crossing between d63 and Nipponbare, d63 and 93-11. Genetic analysis indicated that d63 was controlled by a single recessive gene, which was located on the short arm of chromosome 8, within the genetic distance of 0.40 cM from RM22195. Hence, D63 might be a new gene as there are no dwarf genes reported on the short arm of chromosome 8.
文摘Genetic linkage relationship of the natural colored fiber and six fuzzless seed germplasms in obsolete backgrounds of Gossypium hirsutum(AD genome) and G.barbadense were analyzed in the
文摘Genetic diversity evaluation of mutant lines is essential to facilitate their conservation and utility in breeding programs. Characterization of plant genotypes using morphological markers has limitations which make the procedure inefficient. Application of molecular tools for characterization and diversity assessment has been found useful to complement phenotypic evaluation of plant population. Therefore genetic diversity of some cowpea mutant lines was studied using simple sequence repeats (SSR) markers. DNA barcoding marker, ribulose-1,5-bisphosphate carboxylase(rbcL) of the chloroplast DNA (cpDNA) was also used for characterization and identification of the mutants to species level. The mean polymorphic information content (0.51) obtained from the microsatellites showed high polymorphism in accessing wide genetic diversity among the mutants and their parents. Dendrogram generated revealed 8 groups with most mutants clustered separately from their parents. Sequence analysis revealed insertions/deletions (InDels) and base substitutions as the two main classes of mutations induced in the plastid DNA of the mutants studied. The nucleotide frequencies were 26.95% (A), 34.43% (T), 24.09% (C) and 14.53% (G). A total of 61.38% AT rich region was identified, while GC rich region was found to be 38.62%. Highest rate of mutations were observed in region 3 - 4 indicating that the region is less conserved in cowpea rbcL gene. The present study proved that SSR markers are useful for the genetic diversity assessment of cowpea mutants. It also proved the efficiency of rbcL markers in mutants’ identification. The results indicate that the mutants are valuable genetic resources that have been developed to widen cowpea genetic base.
基金supported by the National Major Special Program of Breeding of Transgenetic Organisms New Variety(Grant Nos.2009ZX08001-022B,2009ZX08009-125B)National Natural ScienceFoundation of China(Grant No.30970171)
文摘A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populations were constructed by crossing with indica cultivars TN1 and Zhefu 802,respectively.Genetic analysis demonstrated that the phenotype was controlled by a single recessive nuclear gene.The closely linked simple sequence repeat(SSR) marker RM1155 was obtained from bulked segregant analysis.Subsequently,sequence tagged site(STS) markers were developed using the published rice genome sequence.Finally,RTL1 was located between an STS marker T1591 and an SSR marker RM1359,at the distances of 0.48 cM and 0.96 cM,respectively.These results will facilitate the cloning of the target gene in further studies.
基金Supported by the Science and Technology Project of Food Production in Jiangxi Province(2006BAD02A04)~~
文摘[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.