[ Objective ] This study aimed to analyze the inheritance of bolting associated traits in Brassica rapa, which will provide useful information in a breeding program for late-bolting or bolting-resistant cultivars of C...[ Objective ] This study aimed to analyze the inheritance of bolting associated traits in Brassica rapa, which will provide useful information in a breeding program for late-bolting or bolting-resistant cultivars of Chinese cabbage. [ Method] Three phenotypic measurements, bolting index, flowering time, days to 5 cm elongated stalk, respectively were used for inheritance analysis of six generations, P, (bolting resistant inbreed line ), P2 (vernalization independent type) and their filial generations F1 , B1, B2 and F2, using the mixed major-gene plus polygene inheritance model. [ Result] The two traits, bolting index and days to 5 cm elongated stalk, both were controlled by two major genes with additive-dominant-epistatic effects ( B-1 model) in hybrid. The flowering time was controlled by one major gene with addltive-dominant effects plus additive-dominant-epistatic effects (D model). The heritability of the major genes in B1, B2 and F2 were 96.22%, 93.33%, 93.55% for bolting index, 70.68%, 70.68%, 70.64% for flowering time, 79.44%, 79.55%, 79.38% for days to 5-cm elongated stalk, respectively, but no polygene heritability was detected in BI, B2 and F2 generation. It indicated that the bolting trait in Brassica rapa was controlled by one or tow major genes. [ Conclusion] This implied that in the genetic improvement for bolting resistant trait major gene was a main factor. It is fit for early selection and environment factor should be mentioned.展开更多
The inheritance of stripe disease resistance in a rice restorer line C224 was analyzed using the mixed effect model of major gene plus polygene for quantitative traits.In addition,the resistance was investigated in se...The inheritance of stripe disease resistance in a rice restorer line C224 was analyzed using the mixed effect model of major gene plus polygene for quantitative traits.In addition,the resistance was investigated in seven crosses of C224 with maintainer lines.The results showed that the stripe resistance of C224 was controlled by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance effects (E-1 model).These two genes had additive effects of-12.47% and-24.75%,respectively,showing negative dominance effects.There were significant epistasis and interaction effects between the two major genes.The heritability of the two major genes was 92.12%,while that of polygenes was 2.74%,indicating that the stripe resistance had dominant major gene effect.Of the seven crosses,five displayed high or medium resistance to the stripe disease.展开更多
The joint analysis of the mixed genetic model of major gene and polygene was conducted to study the inheritance of cryotolerance in cotton during the overwintering period.H077(G.hirsutum L.,weak cryotolerance) and H...The joint analysis of the mixed genetic model of major gene and polygene was conducted to study the inheritance of cryotolerance in cotton during the overwintering period.H077(G.hirsutum L.,weak cryotolerance) and H113(G.barbadence L.,strong cryotolerance) were used as parents.Cryotolerance of six generation populations including P1,P2,F1,B1,B2,and F2,from each of the two reciprocal crosses H077×H113 and H113×H077 were all investigated.The results showed that cryotolerance in cotton during the overwintering period was accorded with two additive major genes and additivedominance polygene genetic model.For cross H077×H113,the heritabilities of major genes in B1,B2,and F2 were 83.62,76.84,and 90.56%,respectively;and the heritability of polygene could only be detected in B2,which was 7.76%.For cross H113×H077,the heritabilities of major genes in B1,B2,and F2 were 67.42,68.95,and 83.40%,respectively;and the heritability of polygene was only detected in F2,which was 6.51%.In addition,the whole heritability in F2 was always higher than that in B1 and B2 in each cross.Therefore,for the cryotolerance breeding of perennial cotton,the method of single cross recombination or single backcross should be adopted to transfer major genes,and the selection in F2 would be more efficient than that in other generations.展开更多
[Objective] This study aimed to investigate the inheritance mechanism of tomato fruit firmness.[Method] Two tomato cultivars significantly different in fruit firmness were selected for investigation of the inheritance...[Objective] This study aimed to investigate the inheritance mechanism of tomato fruit firmness.[Method] Two tomato cultivars significantly different in fruit firmness were selected for investigation of the inheritance mechanism of tomato fruit firmness using combination analysis of six generations (P1,P2,F1,F2,B1 and B2).[Result] The results indicated that the heredity of tomato fruit firmness was consistent with the additive-dominant model controlled by one pair of major genes; the additive effect (d),dominant effect (h) and degree of dominance (h/d) of major genes were 17.37,-7.96 and-0.46,respectively,showing positive additive effect and incompletely dominant-negative effect; the hereditability of major gene effect in B1,B2 and F2 generation was 88.59%,45.81% and 85.62%,respectively.[Conclusion] The heredity of fruit firmness was controlled by one pair of major gene,showing significant additive effect and dominant effect.展开更多
基金Supported by the National Natural Science Foundation of China(30900981)the Scientific Research Fund for the Returned Overseas Chinese Scholars,Ministry Education of China(2010-1561)
文摘[ Objective ] This study aimed to analyze the inheritance of bolting associated traits in Brassica rapa, which will provide useful information in a breeding program for late-bolting or bolting-resistant cultivars of Chinese cabbage. [ Method] Three phenotypic measurements, bolting index, flowering time, days to 5 cm elongated stalk, respectively were used for inheritance analysis of six generations, P, (bolting resistant inbreed line ), P2 (vernalization independent type) and their filial generations F1 , B1, B2 and F2, using the mixed major-gene plus polygene inheritance model. [ Result] The two traits, bolting index and days to 5 cm elongated stalk, both were controlled by two major genes with additive-dominant-epistatic effects ( B-1 model) in hybrid. The flowering time was controlled by one major gene with addltive-dominant effects plus additive-dominant-epistatic effects (D model). The heritability of the major genes in B1, B2 and F2 were 96.22%, 93.33%, 93.55% for bolting index, 70.68%, 70.68%, 70.64% for flowering time, 79.44%, 79.55%, 79.38% for days to 5-cm elongated stalk, respectively, but no polygene heritability was detected in BI, B2 and F2 generation. It indicated that the bolting trait in Brassica rapa was controlled by one or tow major genes. [ Conclusion] This implied that in the genetic improvement for bolting resistant trait major gene was a main factor. It is fit for early selection and environment factor should be mentioned.
基金supported by the Guiding Plans for Natural Sciences Foundation of Liaoning Province,China(Grant No.20092207)the Special Foundation for Young Scientists of Liaoning Rice Research Institute,Shenyang,China(Grant No.DZS-2008-1)
文摘The inheritance of stripe disease resistance in a rice restorer line C224 was analyzed using the mixed effect model of major gene plus polygene for quantitative traits.In addition,the resistance was investigated in seven crosses of C224 with maintainer lines.The results showed that the stripe resistance of C224 was controlled by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance effects (E-1 model).These two genes had additive effects of-12.47% and-24.75%,respectively,showing negative dominance effects.There were significant epistasis and interaction effects between the two major genes.The heritability of the two major genes was 92.12%,while that of polygenes was 2.74%,indicating that the stripe resistance had dominant major gene effect.Of the seven crosses,five displayed high or medium resistance to the stripe disease.
基金supported by the Innovation Project of Guangxi Postgraduate Education,China(2008105930901D015)
文摘The joint analysis of the mixed genetic model of major gene and polygene was conducted to study the inheritance of cryotolerance in cotton during the overwintering period.H077(G.hirsutum L.,weak cryotolerance) and H113(G.barbadence L.,strong cryotolerance) were used as parents.Cryotolerance of six generation populations including P1,P2,F1,B1,B2,and F2,from each of the two reciprocal crosses H077×H113 and H113×H077 were all investigated.The results showed that cryotolerance in cotton during the overwintering period was accorded with two additive major genes and additivedominance polygene genetic model.For cross H077×H113,the heritabilities of major genes in B1,B2,and F2 were 83.62,76.84,and 90.56%,respectively;and the heritability of polygene could only be detected in B2,which was 7.76%.For cross H113×H077,the heritabilities of major genes in B1,B2,and F2 were 67.42,68.95,and 83.40%,respectively;and the heritability of polygene was only detected in F2,which was 6.51%.In addition,the whole heritability in F2 was always higher than that in B1 and B2 in each cross.Therefore,for the cryotolerance breeding of perennial cotton,the method of single cross recombination or single backcross should be adopted to transfer major genes,and the selection in F2 would be more efficient than that in other generations.
文摘[Objective] This study aimed to investigate the inheritance mechanism of tomato fruit firmness.[Method] Two tomato cultivars significantly different in fruit firmness were selected for investigation of the inheritance mechanism of tomato fruit firmness using combination analysis of six generations (P1,P2,F1,F2,B1 and B2).[Result] The results indicated that the heredity of tomato fruit firmness was consistent with the additive-dominant model controlled by one pair of major genes; the additive effect (d),dominant effect (h) and degree of dominance (h/d) of major genes were 17.37,-7.96 and-0.46,respectively,showing positive additive effect and incompletely dominant-negative effect; the hereditability of major gene effect in B1,B2 and F2 generation was 88.59%,45.81% and 85.62%,respectively.[Conclusion] The heredity of fruit firmness was controlled by one pair of major gene,showing significant additive effect and dominant effect.