In recent years, there has been rapid growth of Chinese rail transit networks. Many of these networks require elevated bridges. This results in a bridge-borne noise source, which occurs in addition to the main noise s...In recent years, there has been rapid growth of Chinese rail transit networks. Many of these networks require elevated bridges. This results in a bridge-borne noise source, which occurs in addition to the main noise source (i.e., wheel-rail interactions). Bridge-borne noise is attracting increasing attention because of its low-frequency noise characteristics. This review paper first analyzes the space distribution, spectral characteristics, and sound pressure levels of noise radiated by all-concrete, steel- concrete composite, and all-steel bridges, mainly according to experimental studies. Second, this paper reviews exist- ing theoretical prediction models of noise emanating from bridges: the semianalytical method, the Rayleigh integral method, the boundary element method, and statistical energy analysis. Several case studies are reviewed, and their results are discussed. Finally, according to the results of the current review, the main factors affecting bridgeborne noise are analyzed, several noise reduction measures are proposed for different types of bridges, and their effectiveness is demonstrated.展开更多
Owning to good mechanical properties,steel–concrete composite(SCC)and prestressed concrete(PC)box girders are the types of elevated structures used most in urban rail transit.However,their vibro-acoustic differences ...Owning to good mechanical properties,steel–concrete composite(SCC)and prestressed concrete(PC)box girders are the types of elevated structures used most in urban rail transit.However,their vibro-acoustic differences are yet to be explored in depth,while structure-radiated noise is becoming a main concern in noise-sensitive environments.In this work,numerical simulation is used to investigate the vibration and noise characteristics of both types of box girders induced by running trains,and the numerical procedure is verified with data measured from a PC box girder.The mechanism of vibration transmission and vibro-acoustic comparisons between SCC and PC box girders are investigated in detail,revealing that more vibration and noise arise from SCC box girders.The vibration differences between them are around 7.7 dB(A)at the bottom plate,19.3 dB(A)at the web,and 6.7 dB(A)at the flange,while for structure-radiated noise,the difference is around 5.9 dB(A).Then,potential vibroacoustic control strategies for SCC box girders are discussed.As the vibro-acoustic responses of two types of girders are dominated by the force transmitted to the bridge deck,track isolation is better than structural enhancement.It is shown that using a floating track slab can make the vibration and noise of an SCC box girder lower than those of a PC box girder.However,structural enhancement for the SCC box girder is extremely limited in effects.The six proposed structural enhancement measures reduce vibration by only 1.1–3.6 dB(A) and noise by up to1.5 dB(A).展开更多
基金financial support from the National Natural Science Foundation of China(Grant Nos.51308469 and 51378429)the International Cooperation Program of Sichuan Province(Grant No.2016HH0076)
文摘In recent years, there has been rapid growth of Chinese rail transit networks. Many of these networks require elevated bridges. This results in a bridge-borne noise source, which occurs in addition to the main noise source (i.e., wheel-rail interactions). Bridge-borne noise is attracting increasing attention because of its low-frequency noise characteristics. This review paper first analyzes the space distribution, spectral characteristics, and sound pressure levels of noise radiated by all-concrete, steel- concrete composite, and all-steel bridges, mainly according to experimental studies. Second, this paper reviews exist- ing theoretical prediction models of noise emanating from bridges: the semianalytical method, the Rayleigh integral method, the boundary element method, and statistical energy analysis. Several case studies are reviewed, and their results are discussed. Finally, according to the results of the current review, the main factors affecting bridgeborne noise are analyzed, several noise reduction measures are proposed for different types of bridges, and their effectiveness is demonstrated.
基金This study was supported by the National Natural Science Foundation of China(Nos.51778534 and 51978580).
文摘Owning to good mechanical properties,steel–concrete composite(SCC)and prestressed concrete(PC)box girders are the types of elevated structures used most in urban rail transit.However,their vibro-acoustic differences are yet to be explored in depth,while structure-radiated noise is becoming a main concern in noise-sensitive environments.In this work,numerical simulation is used to investigate the vibration and noise characteristics of both types of box girders induced by running trains,and the numerical procedure is verified with data measured from a PC box girder.The mechanism of vibration transmission and vibro-acoustic comparisons between SCC and PC box girders are investigated in detail,revealing that more vibration and noise arise from SCC box girders.The vibration differences between them are around 7.7 dB(A)at the bottom plate,19.3 dB(A)at the web,and 6.7 dB(A)at the flange,while for structure-radiated noise,the difference is around 5.9 dB(A).Then,potential vibroacoustic control strategies for SCC box girders are discussed.As the vibro-acoustic responses of two types of girders are dominated by the force transmitted to the bridge deck,track isolation is better than structural enhancement.It is shown that using a floating track slab can make the vibration and noise of an SCC box girder lower than those of a PC box girder.However,structural enhancement for the SCC box girder is extremely limited in effects.The six proposed structural enhancement measures reduce vibration by only 1.1–3.6 dB(A) and noise by up to1.5 dB(A).