The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these i...The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.展开更多
This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical ...This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.展开更多
In order to investigate the distribution of soil available micronutrients, and provide a theoretical basis for management of fertilizing reasonably on crops, the contents of major and trace elements (P, K, Ca, Mg, Cu...In order to investigate the distribution of soil available micronutrients, and provide a theoretical basis for management of fertilizing reasonably on crops, the contents of major and trace elements (P, K, Ca, Mg, Cu, Fe, Zn, and Mn) in farm- land soil collected from Yunnan Province were determined by inductively coupled plasma-mass spectrometry (ICP-MS), the contents and distribution of major and trace elements were also studied. The results showed that the contents of available P, K were balance, available Ca, Mg were deficient, and available Cu, Fe, Zn, Mn were very plentiful. Major and trace elements distribution of different landform areas were obviously different. The contents of trace elements (Fe, Zn and Mn) of central Yunnan Red Plateau were significantly higher than those of Hengduan Mountains in western Yunnan and those of karst plateau in eastern Yunnan. The contents of available P, K, and Ca gradually declined from west to east, while the content of available Cu rose gradually from west to east. The results are reference value to elements determination and agricultural production in farmland soils.展开更多
A multi-index analysis including grain size, major and trace elements is performed on the surface sediments from the northeastern Beibu Gulf to trace the sources of the sediments and to understand the controlling fact...A multi-index analysis including grain size, major and trace elements is performed on the surface sediments from the northeastern Beibu Gulf to trace the sources of the sediments and to understand the controlling factors for elements distribution. The mean grain size exhibits a wide variation ranging from 0.09Φ to 8.05Φ with an average value of 5.33Φ. The average contents of major elements descend in an order of c(SiO_2)>c(Al_2O_3)>c(Fe_2O_3)>c(CaO)>c(MgO)>c(K_2O)>c(Na_2O)>c(TiO_2)>c(P_2O_5)>c(MnO), while those of trace elements exhibit a descending order of c(Sr)>c(Rb)>c(V)>c(Zn)>c(Cr)>c(Pb)>c(Ni)>c(Cu)>c(As). On the basis of elementary distribution characteristics and statistical analyses, the study area is divided into the four zones: Zone I is located in the northeastern coastal area of the gulf, which receives large amount of fluvial materials from local rivers in Guangxi and Guangdong, China, and the Qiongzhou Strait; Zone Ⅱ is located in the center of the study area, where surface sediments exhibits a multiple source; Zone Ⅲ is located in the Qiongzhou Strait, where surface sediments are dominated by materials from the Zhujiang River and Hainan; Zone IV is located in the southwest of the study area, where surface sediments are mainly originated from the Red River and Hainan. The statistical analyses of sediment geochemical characteristics reveal that the grain size, which is mainly influenced by hydrodynamics and mineral composition of terrigenous materials, is the leading factor controlling the elementary distribution.Meanwhile, impacts from anthropogenic activities and marine biogenic process will also be taken into consideration.展开更多
The Inductively Coupled Plasma Optical Emission Spectrometer was used to analyze sediment samples collected from the Hangzhou Bay to determine major and trace elemental concentrations. Based on these concentrations, t...The Inductively Coupled Plasma Optical Emission Spectrometer was used to analyze sediment samples collected from the Hangzhou Bay to determine major and trace elemental concentrations. Based on these concentrations, the study area can be classified into three geochemical provinces. Province I covers the northern Hangzhou Bay area and contains high concentrations of A120~, Fe203, MgO, Na20, K20, MnO, Cr, Cu, Ni, Pb, V, Co and Zn. Province III is located in the western Hangzhou Bay, near the Qiantang River mouth, and contains high concentrations of SiO~, Na20, P205~ TiO2, Cr, Sr, Zr. Province II is located in the middle and eastern Hangzhou Bay, with the medium concentrations of major and trace elements. The results also demonstrate that the grain size is the dominating factor controlling the spatial variations of elemental concentrations, and the Changjiang River (Yangtze River) and Qiantang River sediments play an important role in the distribution of these elements. Anthropogenic impact on heavy metal concentrations (especially Cr, Sr and Zr) can be detected in the surface sediments near the Qiantang River mouth.展开更多
In low-nutrient ecosystems such as forests developed on acidic soil, the main limiting factor for plant growth is the availability of soil nutrients. The aim of this study was to investigate in a temperate forest: 1) ...In low-nutrient ecosystems such as forests developed on acidic soil, the main limiting factor for plant growth is the availability of soil nutrients. The aim of this study was to investigate in a temperate forest: 1) the influence of the rhizosphere processes on the availability of nutrients and trace elements during one year period and 2) the seasonal evolution of this rhizosphere effect. Bulk soil and rhizosphere were collected in organo-mineral and mineral horizons of an acidic soil during autumn, winter, and spring under Norway spruce (Picea abies Karst) and beech (Fagus sylvatica). Soil solutions were extracted by soil centrifugation. Rhizosphere solutions were enriched in K, and in Ca, Mg, and Na (principally in spring) compared to those of the bulk soil. Our study reveals seasonal variations of the rhizosphere effect for Ca, Mg, and Na under both species, i.e., higher enrichment of the rhizosphere solution in spring as compared with that in autumn and winter. An enrichment of the rhizosphere solutions was also observed for trace elements regardless of the season under both species in the mineral horizon, only. In contrast, seasonal variations of the rhizosphere effect for the trace elements were observed in the solutions of the organomineral horizon under beech, i.e., enrichment in autumn and depletion in winter. This study demonstrates that rhizosphere biological activities significantly increase nutrient bioavailability during the growth period. These complex interactions between roots, microbial communities and soils are a key-process that supports tree nutrition in nutrient-poor forest soils. This research also reveals that rhizosphere processes a) occur throughout the year, even in winter, and b) influence differently the dynamics of nutrients and trace elements in the root vicinity of the organo-mineral horizon.展开更多
There are abundant vanadium ores in the Cambrian strata in southern Shaanxi,China.Many years of mining activities and surface leaching have polluted the surface water to a certain extent,but the researches on the wate...There are abundant vanadium ores in the Cambrian strata in southern Shaanxi,China.Many years of mining activities and surface leaching have polluted the surface water to a certain extent,but the researches on the water quality characteristics and pollution degree are relatively weak.This contribution was organized to investigate the surface water quality by general parameters,including TDS,Eh,pH,DO,TOC,COD,and EC,in the vanadium ore belt(Yinhua River basin).Major ions were determined to detect the water type and natural chemical weathering,while trace elements were used to illustrate their geochemical characteristics and ecological risk assessment of heavy metals.The study found that the surface water was weakly alkaline and mainly dominated from normal to pool grade.The particle size with1000–10,000 nm of suspended particles was the main carrier of organic matter.The concentration of HCO_(3)^(-)and SO_(4)^(2-)in the anions and Ca^(2+)and Mg^(2+)ions in the cations were relatively high,and the water type was Ca-Mg-HCO_(3)-SO_(4) type.Rock weathering had a great influence on surface water,and the weathering products were mainly silicate and carbonate.Compared with the Type river,the contents of V elements showed an obvious positive anomaly,which may be affected by mining activities of vanadium ore and the annual leaching of the tailings pond.As and Cd in the surface water was polluted seriously.The integrated pollution index suggested that the surface water pollution was serious,and the main stream was more serious with the increasing tailings ponds.展开更多
Many temporary and permanent reservoirs of water occur on or near coal-waste dumps in the Lower-and Upper Silesian Coal Basins(Poland).Little or nothing is known of the degree to which their water chemistry might refl...Many temporary and permanent reservoirs of water occur on or near coal-waste dumps in the Lower-and Upper Silesian Coal Basins(Poland).Little or nothing is known of the degree to which their water chemistry might reflect(i)reservoir type,i.e.,whether permanent or temporary,(ii)level of coal-waste thermal activity,i.e.,whether inactive or self-heating or burnt-out or(iii)region,i.e.,whether the dumps are in Upper-or Lower Silesia.To provide some answers,concentrations of selected ions(NH_(4)^(+),HCO_(3)^(-),F^(-),Cl^(-),Br^(-),NO_(2)^(-),NO_(3)^(-),PO_(4)^(3-),SO_(4)^(2-))were determined by ion chromatography and of nineteen elements(Al,B,Ba,Ca,Cd,Cr,Cu,Fe,K,Li,Mg,Mn,Na,P,Pb,S,Si,Sr,Zn)by inductively coupled plasma mass spectrometry(ICP-MS).The data allow a number of the following observations.When permanent reservoirs are considered,there is a clear relationship between concentrations of ions and major and trace elements and dump thermal activity.The highest concentrations occur where the thermal activity is high as inorganic components are transformed into more water-soluble forms.As dump thermal activity shows a regional pattern,it follows also that elemental and ion concentrations in the dump waters show significant regional differences.In temporary reservoirs,concentrations of ions and major and trace elements are much lower and any correlations between components less significant than in the permanent reservoirs;these reservoirs exist for too short a time for any balance between coal waste-and water components to be established.展开更多
To accurately identify the natural gas hydrates(NGH)in the sea area of the Makran Accretionary Prism,Pakistan,this paper presents the testing and analysis of major and trace elements in sediment samples taken from two...To accurately identify the natural gas hydrates(NGH)in the sea area of the Makran Accretionary Prism,Pakistan,this paper presents the testing and analysis of major and trace elements in sediment samples taken from two stations(S2 and S3)in the area by the China Geological Survey.As shown by testing results,all major elements are slightly different in content between the two stations except SiO2 and CaO.This also applies to the trace elements that include Sr and Ba primarily and Cr,Ni and Zn secondarily.It can be concluded in this study that the tectonic setting of the Makran Accretionary Prism is dominated by oceanic island arc and that provenance of the Makran Accretionary Prism is dominated by felsic igneous provenance,which is at the initial weathering stage and mainly consists of granodiorite.Besides terrigenous detritus,there are sediments possibly originating from Makran-Bela Ophiolite from the northwestern part and Murray Ridge igneous rocks from the southeastern part.The V/Cr,Ni/Co,and V/(V+Ni)ratios indicate that sediments of the two stations are in an oxidation-suboxidation environment.However,the authors infer that the sedimentary environment of the sediments 3.0 m below the seafloor tends to be gradually transformed into a reduction environment by comparison with the Qiongdongnan Basin in the South China Sea where NGH has been discovered.The sediments in the Makran Accretionary Prism are rich in organic matter,with total organic carbon(TOC)content greater than 1%.According to comprehensive research,the organic matter in the sediments mainly originates from marine algae and has high TOC content,which is favorable for the formation of NGH.展开更多
Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurizati...Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurization (WFGD) gypsum. In this study, samples of gypsum slurry were separated into fine and coarse fractions. Multi-elemental analysis of 45 elements in the different size fractions of gypsum, slurry waters and lignite were performed by k0-INAA (k0-instrumental neutron activation analyses). The study found that the volatile elements (Hg, Se and halogens) in the flue gas accumulate in the fine fractions of gypsum. Moreover, the concentrations of most TMEs are considerably higher in the fine fractions compared to the coarse fractions. The exceptions are Ca and Sr that primarily originate from the limestone. Variations of TMEs in the finer fractions are dependent on the presence of CaSO4·2H2O that is the main constituent of the coarse fraction. Consequently, the content of TMEs in the fine fraction is highly dependent on the efficiency of separating the fine fraction from the coarse fraction. Separation of the finer fraction, representing about 10% of the total gypsum, offers the possibility to remove effectively TMEs from WFGD slurry.展开更多
Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Or...Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore-related granitoid pluton, mineralised endoskarn and vein-type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The field and microscope observation reveals that early-stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late- stage magnetite is disseminated or scattered in the ores. Early-stage magnetite contains high contents of Ti, V, Ga, AI and low in Mg and Mn. In contrast, late-stage magnetite is high in Mg, Mn and low in Ti, V, Ga, AI. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+AI+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the (MgO+MnO)- TiO^-AI203 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic-hydrothermal process.展开更多
Drinking water supply for the Main Ethiopian Rift (MER) area principally relies on groundwater wells and springs and is characterized by fluoride contamination. New analyses reveal that the F^- geochemical anomaly is ...Drinking water supply for the Main Ethiopian Rift (MER) area principally relies on groundwater wells and springs and is characterized by fluoride contamination. New analyses reveal that the F^- geochemical anomaly is associated with other potentially toxic elements such as As,B,Mo,U,Al,Fe and Mn. Particularly,35%of the 23 investigated groundwater wells and 70%of the 14 hot springs(and展开更多
The levels and compartmentalization of Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Ta, Au, Th, and U in Phragmites australis (Cav.) Trin. ex...The levels and compartmentalization of Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Ta, Au, Th, and U in Phragmites australis (Cav.) Trin. ex Steud., Carex conescens L. and Cladophora sericea (Hudson) Kutzing from the Caucasian coast of the Black Sea-Anapa recreational region was investigated by Neutron Activation Analysis. The study touches upon subject of the sediment-to-plant and root-to-leaf elemental transfer as well as of the influence of anthropogenic pollution on wetland ecosystems in zone of resort. The content of the majority of considered elements was found higher in the belowground organs of P. australis than in the aboveground tissues while a reverse regularity was evidenced for C. conescens. The levels of elements decrease from bottom sediments to aquatic plants with the notable exception of the halogens Cl, Br and I that presented 5 to 100 fold higher content in plants than in sediments. The increased levels of As, Mo, and Sb in some soil and sediment samples most probably indicate the anthropogenic pollution. It recommends them for a continuous monitoring of the same area.展开更多
Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have b...Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have been measured with the instrumental neutron activation analysis of the Gd2O2S:Pr sample. The concentrations range of the determined elements is from 3 × 10-8 to 2.0% in mass. The determination limit of the elements was calculated to be (0.6 - 1.3 × 10-8% in mass).展开更多
The major and trace elements in 110 surface sediment samples collected from the middle of the Bay of Bengal(mid-Bay of Bengal) are analyzed to investigate provenance. Si levels are highest, followed by Al, and the d...The major and trace elements in 110 surface sediment samples collected from the middle of the Bay of Bengal(mid-Bay of Bengal) are analyzed to investigate provenance. Si levels are highest, followed by Al, and the distributions of these two elements are identical. The average CIA*(chemical index of alteration) value is 72.07,indicating that the degree of weathering of the sediments in the study area is intermediate between those of sediments of the Himalayan and Indian rivers. Factor analyses and discrimination function analyses imply that the two main provenances are the Himalayan and the Indian continent. The inverse model calculation of the Tinormalized element ratios of the Bay of Bengal sediments indicate an estimated average contribution of 83.5%and 16.5% from the Himalayan and peninsular Indian rivers to the study area, respectively. The Himalayan source contributes more sediment to the eastern part of the study area, whereas the western part receives more sediment from the Indian Peninsula than did the eastern part. The primary mechanisms for deposition of sediments in the study area are the transport of Himalayan matter by turbidity currents and river-diluted water and the transport of Indian matter to the study area by a surface circulation in the Bay of Bengal, particularly the East India Coastal Current.展开更多
Hydrogeochemical investigation of groundwater of Chidambaram town has been carried out to assess the suitability for drinking uses and the source for the ions acquisition process. Geologically, the area comes under th...Hydrogeochemical investigation of groundwater of Chidambaram town has been carried out to assess the suitability for drinking uses and the source for the ions acquisition process. Geologically, the area comes under the alluvial zone and is followed by tertiary formation, includes sands, sand stone, laterite, clayey black and stiff clay. The water level varies from 6 m to 10 m bgl. Twenty groundwater samples are collected and analysed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), major cations Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup> and anions , Cl<sup>-</sup>, . The trace elements of Zn, Pb, Cr, Fe, Cd, Cu and Mn are determined. Study results reveal that groundwater in study area is a fresh water type. The pH, EC and TDS are noticed high and sequence of abundance of the major ions is Ca<sup>2+</sup> > Na<sup>+</sup> > Mg<sup>2+</sup> > K<sup>+</sup> and Cl<sup>-</sup> > > . The Stufzand chloride classification indicates that the groundwater is derived from precipitations and Scholler classification shown type I. Hydrochemical facies of groundwater are Ca<sup>2+</sup> > Na<sup>+</sup> > Cl<sup>-</sup> and saturation index shows that nearly all the water samples are under saturated with respect to carbonate (calcite, dolomite and aragonite) and sulfate (gypsum and anhydrite) minerals. Except Zn, other elements of Fe, Pb, Cr, Mn, Cu, and Cd are found high and above the permissible limit of drinking water standard. The ionic concentration present in the groundwater of the study area can be from wastes of commercial activities, domestic sewage and automobiles rather than by ionic exchange and geological formation.展开更多
The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controver...The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.展开更多
The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,and...The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.展开更多
The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. I...The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.展开更多
This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by mu...This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.展开更多
基金funded by the“Key Scientific Issues and Innovative Technology Research on Oil and Gas Resource Exploration in China Sea Risk Exploration Area”(Grant No.CCL2022RCPS2017XNN)from CNOOC Research Institute,Beijing.
文摘The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.
文摘This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province~~
文摘In order to investigate the distribution of soil available micronutrients, and provide a theoretical basis for management of fertilizing reasonably on crops, the contents of major and trace elements (P, K, Ca, Mg, Cu, Fe, Zn, and Mn) in farm- land soil collected from Yunnan Province were determined by inductively coupled plasma-mass spectrometry (ICP-MS), the contents and distribution of major and trace elements were also studied. The results showed that the contents of available P, K were balance, available Ca, Mg were deficient, and available Cu, Fe, Zn, Mn were very plentiful. Major and trace elements distribution of different landform areas were obviously different. The contents of trace elements (Fe, Zn and Mn) of central Yunnan Red Plateau were significantly higher than those of Hengduan Mountains in western Yunnan and those of karst plateau in eastern Yunnan. The contents of available P, K, and Ca gradually declined from west to east, while the content of available Cu rose gradually from west to east. The results are reference value to elements determination and agricultural production in farmland soils.
基金The National Programme on Global Change and Air-Sea Interaction of China under contract Nos GASI-GEOGE-03,GASI-04-01-02 and GASI-GEOGE-05the National Natural Science Foundation of China under contract Nos 41476047,41106045,41506012 and 41206045
文摘A multi-index analysis including grain size, major and trace elements is performed on the surface sediments from the northeastern Beibu Gulf to trace the sources of the sediments and to understand the controlling factors for elements distribution. The mean grain size exhibits a wide variation ranging from 0.09Φ to 8.05Φ with an average value of 5.33Φ. The average contents of major elements descend in an order of c(SiO_2)>c(Al_2O_3)>c(Fe_2O_3)>c(CaO)>c(MgO)>c(K_2O)>c(Na_2O)>c(TiO_2)>c(P_2O_5)>c(MnO), while those of trace elements exhibit a descending order of c(Sr)>c(Rb)>c(V)>c(Zn)>c(Cr)>c(Pb)>c(Ni)>c(Cu)>c(As). On the basis of elementary distribution characteristics and statistical analyses, the study area is divided into the four zones: Zone I is located in the northeastern coastal area of the gulf, which receives large amount of fluvial materials from local rivers in Guangxi and Guangdong, China, and the Qiongzhou Strait; Zone Ⅱ is located in the center of the study area, where surface sediments exhibits a multiple source; Zone Ⅲ is located in the Qiongzhou Strait, where surface sediments are dominated by materials from the Zhujiang River and Hainan; Zone IV is located in the southwest of the study area, where surface sediments are mainly originated from the Red River and Hainan. The statistical analyses of sediment geochemical characteristics reveal that the grain size, which is mainly influenced by hydrodynamics and mineral composition of terrigenous materials, is the leading factor controlling the elementary distribution.Meanwhile, impacts from anthropogenic activities and marine biogenic process will also be taken into consideration.
基金The National Natural Science Foundation of China under contract No. 41106063China Postdoctoral Science Foundation under contract No. 20100481304+1 种基金Marine Public Welfare Research Project under contract No. 200805063Coastal Investigation and Research Project of China under contract Nos 908-01-CJ09 and 908-ZC-I-05
文摘The Inductively Coupled Plasma Optical Emission Spectrometer was used to analyze sediment samples collected from the Hangzhou Bay to determine major and trace elemental concentrations. Based on these concentrations, the study area can be classified into three geochemical provinces. Province I covers the northern Hangzhou Bay area and contains high concentrations of A120~, Fe203, MgO, Na20, K20, MnO, Cr, Cu, Ni, Pb, V, Co and Zn. Province III is located in the western Hangzhou Bay, near the Qiantang River mouth, and contains high concentrations of SiO~, Na20, P205~ TiO2, Cr, Sr, Zr. Province II is located in the middle and eastern Hangzhou Bay, with the medium concentrations of major and trace elements. The results also demonstrate that the grain size is the dominating factor controlling the spatial variations of elemental concentrations, and the Changjiang River (Yangtze River) and Qiantang River sediments play an important role in the distribution of these elements. Anthropogenic impact on heavy metal concentrations (especially Cr, Sr and Zr) can be detected in the surface sediments near the Qiantang River mouth.
文摘In low-nutrient ecosystems such as forests developed on acidic soil, the main limiting factor for plant growth is the availability of soil nutrients. The aim of this study was to investigate in a temperate forest: 1) the influence of the rhizosphere processes on the availability of nutrients and trace elements during one year period and 2) the seasonal evolution of this rhizosphere effect. Bulk soil and rhizosphere were collected in organo-mineral and mineral horizons of an acidic soil during autumn, winter, and spring under Norway spruce (Picea abies Karst) and beech (Fagus sylvatica). Soil solutions were extracted by soil centrifugation. Rhizosphere solutions were enriched in K, and in Ca, Mg, and Na (principally in spring) compared to those of the bulk soil. Our study reveals seasonal variations of the rhizosphere effect for Ca, Mg, and Na under both species, i.e., higher enrichment of the rhizosphere solution in spring as compared with that in autumn and winter. An enrichment of the rhizosphere solutions was also observed for trace elements regardless of the season under both species in the mineral horizon, only. In contrast, seasonal variations of the rhizosphere effect for the trace elements were observed in the solutions of the organomineral horizon under beech, i.e., enrichment in autumn and depletion in winter. This study demonstrates that rhizosphere biological activities significantly increase nutrient bioavailability during the growth period. These complex interactions between roots, microbial communities and soils are a key-process that supports tree nutrition in nutrient-poor forest soils. This research also reveals that rhizosphere processes a) occur throughout the year, even in winter, and b) influence differently the dynamics of nutrients and trace elements in the root vicinity of the organo-mineral horizon.
基金supported by National Natural Science Foundation of China(No.4210021463)Natural Science Basic Research Program of Shaanxi Province(No.2020JQ-744)+2 种基金China Postdoctoral Science Foundation(No.2020M673443)Shaanxi Provincial Education Department general special project(No.21JK0775)Public Welfare Geology Project of Shaanxi Province(No.201907)。
文摘There are abundant vanadium ores in the Cambrian strata in southern Shaanxi,China.Many years of mining activities and surface leaching have polluted the surface water to a certain extent,but the researches on the water quality characteristics and pollution degree are relatively weak.This contribution was organized to investigate the surface water quality by general parameters,including TDS,Eh,pH,DO,TOC,COD,and EC,in the vanadium ore belt(Yinhua River basin).Major ions were determined to detect the water type and natural chemical weathering,while trace elements were used to illustrate their geochemical characteristics and ecological risk assessment of heavy metals.The study found that the surface water was weakly alkaline and mainly dominated from normal to pool grade.The particle size with1000–10,000 nm of suspended particles was the main carrier of organic matter.The concentration of HCO_(3)^(-)and SO_(4)^(2-)in the anions and Ca^(2+)and Mg^(2+)ions in the cations were relatively high,and the water type was Ca-Mg-HCO_(3)-SO_(4) type.Rock weathering had a great influence on surface water,and the weathering products were mainly silicate and carbonate.Compared with the Type river,the contents of V elements showed an obvious positive anomaly,which may be affected by mining activities of vanadium ore and the annual leaching of the tailings pond.As and Cd in the surface water was polluted seriously.The integrated pollution index suggested that the surface water pollution was serious,and the main stream was more serious with the increasing tailings ponds.
基金the National Science Center of Poland(grants NCN No 2011/03/B/ST10/06331 and No 2017/27/B/ST 10/00680)enabled this project.Dr.Padhraig Kennan(University College,Dublin,Ireland)helped with language corrections.
文摘Many temporary and permanent reservoirs of water occur on or near coal-waste dumps in the Lower-and Upper Silesian Coal Basins(Poland).Little or nothing is known of the degree to which their water chemistry might reflect(i)reservoir type,i.e.,whether permanent or temporary,(ii)level of coal-waste thermal activity,i.e.,whether inactive or self-heating or burnt-out or(iii)region,i.e.,whether the dumps are in Upper-or Lower Silesia.To provide some answers,concentrations of selected ions(NH_(4)^(+),HCO_(3)^(-),F^(-),Cl^(-),Br^(-),NO_(2)^(-),NO_(3)^(-),PO_(4)^(3-),SO_(4)^(2-))were determined by ion chromatography and of nineteen elements(Al,B,Ba,Ca,Cd,Cr,Cu,Fe,K,Li,Mg,Mn,Na,P,Pb,S,Si,Sr,Zn)by inductively coupled plasma mass spectrometry(ICP-MS).The data allow a number of the following observations.When permanent reservoirs are considered,there is a clear relationship between concentrations of ions and major and trace elements and dump thermal activity.The highest concentrations occur where the thermal activity is high as inorganic components are transformed into more water-soluble forms.As dump thermal activity shows a regional pattern,it follows also that elemental and ion concentrations in the dump waters show significant regional differences.In temporary reservoirs,concentrations of ions and major and trace elements are much lower and any correlations between components less significant than in the permanent reservoirs;these reservoirs exist for too short a time for any balance between coal waste-and water components to be established.
基金This work was funded by the projects of the National Natural Science Foundation of China(91858208,42076069)the project of China Geological Survey(DD20190581)。
文摘To accurately identify the natural gas hydrates(NGH)in the sea area of the Makran Accretionary Prism,Pakistan,this paper presents the testing and analysis of major and trace elements in sediment samples taken from two stations(S2 and S3)in the area by the China Geological Survey.As shown by testing results,all major elements are slightly different in content between the two stations except SiO2 and CaO.This also applies to the trace elements that include Sr and Ba primarily and Cr,Ni and Zn secondarily.It can be concluded in this study that the tectonic setting of the Makran Accretionary Prism is dominated by oceanic island arc and that provenance of the Makran Accretionary Prism is dominated by felsic igneous provenance,which is at the initial weathering stage and mainly consists of granodiorite.Besides terrigenous detritus,there are sediments possibly originating from Makran-Bela Ophiolite from the northwestern part and Murray Ridge igneous rocks from the southeastern part.The V/Cr,Ni/Co,and V/(V+Ni)ratios indicate that sediments of the two stations are in an oxidation-suboxidation environment.However,the authors infer that the sedimentary environment of the sediments 3.0 m below the seafloor tends to be gradually transformed into a reduction environment by comparison with the Qiongdongnan Basin in the South China Sea where NGH has been discovered.The sediments in the Makran Accretionary Prism are rich in organic matter,with total organic carbon(TOC)content greater than 1%.According to comprehensive research,the organic matter in the sediments mainly originates from marine algae and has high TOC content,which is favorable for the formation of NGH.
基金funded by the Slovenian Research Agency program P1-0143 and project L1-5446 and the young researchers programsupported by the EMPIR MercOx project(16ENV01).
文摘Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurization (WFGD) gypsum. In this study, samples of gypsum slurry were separated into fine and coarse fractions. Multi-elemental analysis of 45 elements in the different size fractions of gypsum, slurry waters and lignite were performed by k0-INAA (k0-instrumental neutron activation analyses). The study found that the volatile elements (Hg, Se and halogens) in the flue gas accumulate in the fine fractions of gypsum. Moreover, the concentrations of most TMEs are considerably higher in the fine fractions compared to the coarse fractions. The exceptions are Ca and Sr that primarily originate from the limestone. Variations of TMEs in the finer fractions are dependent on the presence of CaSO4·2H2O that is the main constituent of the coarse fraction. Consequently, the content of TMEs in the fine fraction is highly dependent on the efficiency of separating the fine fraction from the coarse fraction. Separation of the finer fraction, representing about 10% of the total gypsum, offers the possibility to remove effectively TMEs from WFGD slurry.
基金supported by the Geological Survey Program of China Geological Survey (1212011121220)
文摘Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore-related granitoid pluton, mineralised endoskarn and vein-type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The field and microscope observation reveals that early-stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late- stage magnetite is disseminated or scattered in the ores. Early-stage magnetite contains high contents of Ti, V, Ga, AI and low in Mg and Mn. In contrast, late-stage magnetite is high in Mg, Mn and low in Ti, V, Ga, AI. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+AI+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the (MgO+MnO)- TiO^-AI203 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic-hydrothermal process.
文摘Drinking water supply for the Main Ethiopian Rift (MER) area principally relies on groundwater wells and springs and is characterized by fluoride contamination. New analyses reveal that the F^- geochemical anomaly is associated with other potentially toxic elements such as As,B,Mo,U,Al,Fe and Mn. Particularly,35%of the 23 investigated groundwater wells and 70%of the 14 hot springs(and
文摘The levels and compartmentalization of Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Ta, Au, Th, and U in Phragmites australis (Cav.) Trin. ex Steud., Carex conescens L. and Cladophora sericea (Hudson) Kutzing from the Caucasian coast of the Black Sea-Anapa recreational region was investigated by Neutron Activation Analysis. The study touches upon subject of the sediment-to-plant and root-to-leaf elemental transfer as well as of the influence of anthropogenic pollution on wetland ecosystems in zone of resort. The content of the majority of considered elements was found higher in the belowground organs of P. australis than in the aboveground tissues while a reverse regularity was evidenced for C. conescens. The levels of elements decrease from bottom sediments to aquatic plants with the notable exception of the halogens Cl, Br and I that presented 5 to 100 fold higher content in plants than in sediments. The increased levels of As, Mo, and Sb in some soil and sediment samples most probably indicate the anthropogenic pollution. It recommends them for a continuous monitoring of the same area.
文摘Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have been measured with the instrumental neutron activation analysis of the Gd2O2S:Pr sample. The concentrations range of the determined elements is from 3 × 10-8 to 2.0% in mass. The determination limit of the elements was calculated to be (0.6 - 1.3 × 10-8% in mass).
基金The National Natural Science Foundation of China under contract No.U1606401the National Program on Global Change and Air-Sea Interaction of China under contract Nos GASI-02-IND-CJ02,GASI-GEOGE-03 and GASI-GEOGE-06-03
文摘The major and trace elements in 110 surface sediment samples collected from the middle of the Bay of Bengal(mid-Bay of Bengal) are analyzed to investigate provenance. Si levels are highest, followed by Al, and the distributions of these two elements are identical. The average CIA*(chemical index of alteration) value is 72.07,indicating that the degree of weathering of the sediments in the study area is intermediate between those of sediments of the Himalayan and Indian rivers. Factor analyses and discrimination function analyses imply that the two main provenances are the Himalayan and the Indian continent. The inverse model calculation of the Tinormalized element ratios of the Bay of Bengal sediments indicate an estimated average contribution of 83.5%and 16.5% from the Himalayan and peninsular Indian rivers to the study area, respectively. The Himalayan source contributes more sediment to the eastern part of the study area, whereas the western part receives more sediment from the Indian Peninsula than did the eastern part. The primary mechanisms for deposition of sediments in the study area are the transport of Himalayan matter by turbidity currents and river-diluted water and the transport of Indian matter to the study area by a surface circulation in the Bay of Bengal, particularly the East India Coastal Current.
文摘Hydrogeochemical investigation of groundwater of Chidambaram town has been carried out to assess the suitability for drinking uses and the source for the ions acquisition process. Geologically, the area comes under the alluvial zone and is followed by tertiary formation, includes sands, sand stone, laterite, clayey black and stiff clay. The water level varies from 6 m to 10 m bgl. Twenty groundwater samples are collected and analysed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), major cations Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup> and anions , Cl<sup>-</sup>, . The trace elements of Zn, Pb, Cr, Fe, Cd, Cu and Mn are determined. Study results reveal that groundwater in study area is a fresh water type. The pH, EC and TDS are noticed high and sequence of abundance of the major ions is Ca<sup>2+</sup> > Na<sup>+</sup> > Mg<sup>2+</sup> > K<sup>+</sup> and Cl<sup>-</sup> > > . The Stufzand chloride classification indicates that the groundwater is derived from precipitations and Scholler classification shown type I. Hydrochemical facies of groundwater are Ca<sup>2+</sup> > Na<sup>+</sup> > Cl<sup>-</sup> and saturation index shows that nearly all the water samples are under saturated with respect to carbonate (calcite, dolomite and aragonite) and sulfate (gypsum and anhydrite) minerals. Except Zn, other elements of Fe, Pb, Cr, Mn, Cu, and Cd are found high and above the permissible limit of drinking water standard. The ionic concentration present in the groundwater of the study area can be from wastes of commercial activities, domestic sewage and automobiles rather than by ionic exchange and geological formation.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2901903)the Geological Comprehensive Research Project of China’s Metallurgical Geology Bureau(Grant No.[2022]CMGBDZYJ005),the National Natural Science Foundation of China(Grant No.42002097)the Geological Investigation Project(Grant Nos.DD20230031,DD20221690,DD20230049,DD20230337).
文摘The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.
基金This study is financially supported by the National Science Fund for Distinguished Young Scholars(No.42025301)Guizhou Provincial 2020 Science and Technology Subsidies(No.GZ2020SIG).
文摘The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.
文摘The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.
基金supported by the Dean Faculty of Science,University of Karachi research grant.
文摘This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.