Waste tire powder, as waste rubber WR was subjected to grafting with styrene (St) and maleic anhydride (MA). Hydrogen peroxide H2O2 was used to initiate the free radical copolymerization of St onto WR. A thermal initi...Waste tire powder, as waste rubber WR was subjected to grafting with styrene (St) and maleic anhydride (MA). Hydrogen peroxide H2O2 was used to initiate the free radical copolymerization of St onto WR. A thermal initiation was used in case of grafting of MA onto WR. Effect of initiator and monomer concentrations together with the influence of reaction temperature and reaction time were investigated. The grafting was estimated by weight, and the grafted copolymers were characterized by FT/IR, DSC and SEM to prove the grafting. It has found that the grafting increases with increase monomer and initiator concentrations. The increase in the reaction temperature and time also causes increasing levels of the grafted St and MA.展开更多
通过熔融共混的方法制备了不同配比的聚苯硫醚(PPS)/马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS-g-MAH)共混物,采用热失重方法,分析了SEBS-g-MAH对PPS热稳定性能的影响,并且通过差示扫描量热分析法研究了SEBS-g-MAH对PPS结...通过熔融共混的方法制备了不同配比的聚苯硫醚(PPS)/马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS-g-MAH)共混物,采用热失重方法,分析了SEBS-g-MAH对PPS热稳定性能的影响,并且通过差示扫描量热分析法研究了SEBS-g-MAH对PPS结晶性能的影响,同时研究了PPS/SEBS-g-MAH共混物的力学性能。结果表明,共混物的热稳定性较纯PPS有所下降;PPS结晶峰宽度随SEBS-g-MAH含量的增加先减小后增大,结晶速率和结晶度较纯PPS减小,但对熔点影响较小;SEBS-g-MAH的加入使共混物的缺口冲击强度和断裂伸长率增大,韧性增加。当SEBS-g-MAH含量为40%时,缺口冲击强度为13.1 k J/m2,断裂伸长率为13.7%,但拉伸强度较纯PPS下降,为54.2 MPa。展开更多
文摘Waste tire powder, as waste rubber WR was subjected to grafting with styrene (St) and maleic anhydride (MA). Hydrogen peroxide H2O2 was used to initiate the free radical copolymerization of St onto WR. A thermal initiation was used in case of grafting of MA onto WR. Effect of initiator and monomer concentrations together with the influence of reaction temperature and reaction time were investigated. The grafting was estimated by weight, and the grafted copolymers were characterized by FT/IR, DSC and SEM to prove the grafting. It has found that the grafting increases with increase monomer and initiator concentrations. The increase in the reaction temperature and time also causes increasing levels of the grafted St and MA.
文摘通过熔融共混的方法制备了不同配比的聚苯硫醚(PPS)/马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS-g-MAH)共混物,采用热失重方法,分析了SEBS-g-MAH对PPS热稳定性能的影响,并且通过差示扫描量热分析法研究了SEBS-g-MAH对PPS结晶性能的影响,同时研究了PPS/SEBS-g-MAH共混物的力学性能。结果表明,共混物的热稳定性较纯PPS有所下降;PPS结晶峰宽度随SEBS-g-MAH含量的增加先减小后增大,结晶速率和结晶度较纯PPS减小,但对熔点影响较小;SEBS-g-MAH的加入使共混物的缺口冲击强度和断裂伸长率增大,韧性增加。当SEBS-g-MAH含量为40%时,缺口冲击强度为13.1 k J/m2,断裂伸长率为13.7%,但拉伸强度较纯PPS下降,为54.2 MPa。