期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices
1
作者 So-Eun Jeon Ye-Sol Oh +1 位作者 Yeon-Ji Lee Il-Gu Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1669-1687,共19页
With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signatu... With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signature-based detection methods,static analysis,and dynamic analysis techniques have been previously explored for malicious traffic detection,they have limitations in identifying diversified malware traffic patterns.Recent research has been focused on the application of machine learning to detect these patterns.However,applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process.In this study,we examined methods for effectively utilizing machine learning-based malicious traffic detection approaches for lightweight devices.We introduced the suboptimal feature selection model(SFSM),a feature selection technique designed to reduce complexity while maintaining the effectiveness of malicious traffic detection.Detection performance was evaluated on various malicious traffic,benign,exploits,and generic,using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for feature selection and narrowed the search scope to encompass all features.SFSM improved learning performance while minimizing complexity by considering feature selection and exhaustive search as two steps,a problem not considered in conventional models.Our experimental results showed that the detection accuracy was improved by approximately 20%compared to the random model,and the reduction in accuracy compared to the greedy model,which performs an exhaustive search on all features,was kept within 6%.Additionally,latency and complexity were reduced by approximately 96%and 99.78%,respectively,compared to the greedy model.This study demonstrates that malicious traffic can be effectively detected even in lightweight device environments.SFSM verified the possibility of detecting various attack traffic on lightweight devices. 展开更多
关键词 Feature selection lightweight device machine learning Internet of Things malicious traffic
下载PDF
BSTFNet:An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features
2
作者 Hong Huang Xingxing Zhang +2 位作者 Ye Lu Ze Li Shaohua Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第3期3929-3951,共23页
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me... While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic. 展开更多
关键词 Encrypted malicious traffic classification bidirectional encoder representations from transformers text convolutional neural network bidirectional gated recurrent unit
下载PDF
Detecting While Accessing:A Semi-Supervised Learning-Based Approach for Malicious Traffic Detection in Internet of Things 被引量:1
3
作者 Yantian Luo Hancun Sun +3 位作者 Xu Chen Ning Ge Wei Feng Jianhua Lu 《China Communications》 SCIE CSCD 2023年第4期302-314,共13页
In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In thi... In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data. 展开更多
关键词 malicious traffic detection semi-supervised learning Internet of Things(Io T) TRANSFORMER masked behavior model
下载PDF
Malicious Traffic Detection in IoT and Local Networks Using Stacked Ensemble Classifier
4
作者 R.D.Pubudu L.Indrasiri Ernesto Lee +2 位作者 Vaibhav Rupapara Furqan Rustam Imran Ashraf 《Computers, Materials & Continua》 SCIE EI 2022年第4期489-515,共27页
Malicious traffic detection over the internet is one of the challenging areas for researchers to protect network infrastructures from any malicious activity.Several shortcomings of a network system can be leveraged by... Malicious traffic detection over the internet is one of the challenging areas for researchers to protect network infrastructures from any malicious activity.Several shortcomings of a network system can be leveraged by an attacker to get unauthorized access through malicious traffic.Safeguard from such attacks requires an efficient automatic system that can detect malicious traffic timely and avoid system damage.Currently,many automated systems can detect malicious activity,however,the efficacy and accuracy need further improvement to detect malicious traffic from multi-domain systems.The present study focuses on the detection of malicious traffic with high accuracy using machine learning techniques.The proposed approach used two datasets UNSW-NB15 and IoTID20 which contain the data for IoT-based traffic and local network traffic,respectively.Both datasets were combined to increase the capability of the proposed approach in detecting malicious traffic from local and IoT networks,with high accuracy.Horizontally merging both datasets requires an equal number of features which was achieved by reducing feature count to 30 for each dataset by leveraging principal component analysis(PCA).The proposed model incorporates stacked ensemble model extra boosting forest(EBF)which is a combination of tree-based models such as extra tree classifier,gradient boosting classifier,and random forest using a stacked ensemble approach.Empirical results show that EBF performed significantly better and achieved the highest accuracy score of 0.985 and 0.984 on the multi-domain dataset for two and four classes,respectively. 展开更多
关键词 Stacked ensemble PCA malicious traffic detection CLASSIFICATION machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部