Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. He...Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.展开更多
GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed un...GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed understanding of the GaP(110)-water interfacial structure is of great importance.Ab initio molecular dynamics(AIMD)can be used for obtaining the microscopic information of the interfacial structure.However,the GaP(110)-water interface cannot converge to an equilibrated structure at the time scale of the AIMD simulation.In this work,we perform the machine learning accelerated molecular dynamics(MLMD)to overcome the difficulty of insufficient sampling by AIMD.With the help of MLMD,we unravel the microscopic information of the structure of the GaP(110)-water interface,and obtain a deeper understanding of the mechanisms of proton transfer at the GaP(110)-water interface,which will pave the way for gaining valuable insights into photoelectrocatalytic mechanisms and improving the performance of photoelectrochemical cells.展开更多
With the introduction of high-speed trains into chinese railway system, closeattention should be paid to the aspects of safety in hish-speed railways. Thereare many interfaces which are very important and directly rel...With the introduction of high-speed trains into chinese railway system, closeattention should be paid to the aspects of safety in hish-speed railways. Thereare many interfaces which are very important and directly related to drivmgsafety. This paper focuses on features of design and analyses the principles ofsafety.展开更多
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros...The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.展开更多
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa...The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process.展开更多
Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common d...Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common dilemmas,which realize highprecision and stable touch detection but are rigid,bulky,and thick or achieve high flexibility to wear but lose precision.Here,we construct highly bending-insensitive,unpixelated,and waterproof epidermal interfaces(BUW epidermal interfaces)and demonstrate their interactive applications of conformal human–machine integration.The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection,high flexibility,rapid response time,excellent stability,and versatile“cut-and-paste”character.Regardless of whether being flat or bent,the BUW epidermal interface can be conformally attached to the human skin for real-time,comfortable,and unrestrained interactions.This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics,which offers a new technology route and may further broaden human–machine interactions toward metaverse.展开更多
The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-c...The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-computer interface(BCI)to awareness detection with a passive auditory stimulation paradigm.12 subjects with normal hearing were invited to collect electroencephalogram(EEG)based on a BCI communication system,in which EEG signals are transmitted wirelessly.After necessary preprocessing,RBF-SVM and EEGNet were used for algorithm realization and analysis.For a single subject,RBF-SVM can distinguish his(her)name stimuli awareness with classification accuracies ranging from 60-95%.EEGNet was used to learn all subjects'data and improved accuracy to 78.04%for characteristics finding and model generalization.Moreover,we completed the supplementary analysis work from the time domain and time-frequency domain.This study applied BCI communication to human awareness detection,proposed a passive auditory paradigm,and proved the effectiveness,which could be an inspiration for brain,mental or physical diseases diagnosis and detection.展开更多
This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One archit...This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.展开更多
As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the s...As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.展开更多
The Brain-Computer Interfaces(BCIs)had been proposed and used in therapeutics for decades.However,the need of time-consuming calibration phase and the lack of robustness,which are caused by little-labeled data,are res...The Brain-Computer Interfaces(BCIs)had been proposed and used in therapeutics for decades.However,the need of time-consuming calibration phase and the lack of robustness,which are caused by little-labeled data,are restricting the advance and application of BCI,especially for the BCI based on motor imagery(MI).In this paper,we reviewed the recent development in the machine learning algorithm used in the MI-based BCI,which may provide potential solutions for addressing the issue.We classified these algorithms into two categories,namely,and enhancing the representation and expanding the training set.Specifically,these methods of enhancing the representation of features collected from few EEG trials are based on extracting features of multiple bands,regularization,and so on.The methods of expanding the training dataset include approaches of transfer learning(session to session transfer,subject to subject transfer)and generating artificial EEG data.The result of these techniques showed the resolution of the challenges to some extent.As a developing research area,the study of BCI algorithms in little-labeled data is increasingly requiring the advancement of human brain physiological structure research and more transfer learning algorithms research.展开更多
The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties li...The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.展开更多
A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthe...A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthermore,the existence of Hopf-zero bifurcation is discussed.In the end,some numerical simulations are carried out to illustrate the results found.展开更多
A system that allows computer interaction by disabled people with very low mobility and who cannot use the standard procedure based on keyboard and mouse is presented. The development device uses the patient’s volunt...A system that allows computer interaction by disabled people with very low mobility and who cannot use the standard procedure based on keyboard and mouse is presented. The development device uses the patient’s voluntary biomechanical signals, specifically, winks—which constitute an ability that generally remains in this kind of patients—, as interface to control the computer. A prototype based on robust and low-cost elements has been built and its performance has been validated through real trials by 16 users without previous training. The system can be optimized after a learning period in order to be adapted to every user. Also, good results were obtained in a subjective satisfaction survey that was completed by the users after carrying out the test trials.展开更多
Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especi...Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.展开更多
Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which...Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which can beused to control other IoT devices. Classification of hand movements will beone step closer to applying these algorithms in real-life situations using EEGheadsets. This paper uses different feature extraction techniques and sophisticatedmachine learning algorithms to classify hand movements from EEG brain signalsto control prosthetic hands for amputated persons. To achieve good classificationaccuracy, denoising and feature extraction of EEG signals is a significant step. Wesaw a considerable increase in all the machine learning models when the movingaverage filter was applied to the raw EEG data. Feature extraction techniques likea fast fourier transform (FFT) and continuous wave transform (CWT) were usedin this study;three types of features were extracted, i.e., FFT Features, CWTCoefficients and CWT scalogram images. We trained and compared differentmachine learning (ML) models like logistic regression, random forest, k-nearestneighbors (KNN), light gradient boosting machine (GBM) and XG boost onFFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFTfeatures gave the maximum accuracy of 88%.展开更多
A digital man-machine interaction system controlled by communications between two processors of TMS320F240 and AT98C2051 was researched in the paper. The system is easy to set and modify welding process parameters by ...A digital man-machine interaction system controlled by communications between two processors of TMS320F240 and AT98C2051 was researched in the paper. The system is easy to set and modify welding process parameters by keyboards, and display information of welding site by LCD (Liquid Crystal Display). As one part of multi-task system about TIG welding machine, the coordination of man-machine interaction system with other tasks is the main point to the stability and reliability of its operation. Experiments result indicates that the system is stable, operation-flexible, high precision, and anti-interfering.展开更多
Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional fe...Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional feature design of dashboard is the analysis of man-machine interface, and visual organization effect design of dashboard is a branch of industrial design, both of them interact and unite.展开更多
This study explores the significance,current research landscape,and conceptualization of sports safety promotion.Safety in sports is fundamental to youth physical activities,and an excessive focus on or neglect of saf...This study explores the significance,current research landscape,and conceptualization of sports safety promotion.Safety in sports is fundamental to youth physical activities,and an excessive focus on or neglect of safety is unwarranted.Globally,numerous countries have extensively researched sports safety promotion and implemented diverse strategies.Drawing from KABP(Knowledge,Attitude,Behavior,Practice)theory and 4M(Man,Machine,Medium,Management)management,this paper presents a conceptual framework for sports safety promotion.It integrates these theories to devise a comprehensive accident prevention model within a sports safety promotion system.The framework prioritizes enhancing students’safety literacy and underscores the practical application of safety knowledge and skills in simulated sports settings following structured safety education.It aims to enhance students’competency and proficiency in averting sports-related injuries.展开更多
基金supported by the National Natural Science Foundation of China (62075006)the National Key R&D Program of China (2018YFB1500200)。
文摘Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.
基金the National Natural Science Foundation of China(22225302,21991151,21991150,22021001,92161113,91945301)the Fundamental Research Funds for the Central Universities(20720220009)+1 种基金the China Postdoctoral Science Foundation(2020 M682079)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110539)。
文摘GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed understanding of the GaP(110)-water interfacial structure is of great importance.Ab initio molecular dynamics(AIMD)can be used for obtaining the microscopic information of the interfacial structure.However,the GaP(110)-water interface cannot converge to an equilibrated structure at the time scale of the AIMD simulation.In this work,we perform the machine learning accelerated molecular dynamics(MLMD)to overcome the difficulty of insufficient sampling by AIMD.With the help of MLMD,we unravel the microscopic information of the structure of the GaP(110)-water interface,and obtain a deeper understanding of the mechanisms of proton transfer at the GaP(110)-water interface,which will pave the way for gaining valuable insights into photoelectrocatalytic mechanisms and improving the performance of photoelectrochemical cells.
文摘With the introduction of high-speed trains into chinese railway system, closeattention should be paid to the aspects of safety in hish-speed railways. Thereare many interfaces which are very important and directly related to drivmgsafety. This paper focuses on features of design and analyses the principles ofsafety.
文摘The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.
文摘The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process.
基金supported by National Natural Science Foundation of China(52202117,52232006,52072029,and 12102256)Collaborative Innovation Platform Project of Fu-Xia-Quan National Independent Innovation Demonstration Zone(3502ZCQXT2022005)+3 种基金Natural Science Foundation of Fujian Province of China(2022J01065)State Key Lab of Advanced Metals and Materials(2022-Z09)Fundamental Research Funds for the Central Universities(20720220075)the Ministry of Education,Singapore,under its MOE ARF Tier 2(MOE2019-T2-2-179).
文摘Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common dilemmas,which realize highprecision and stable touch detection but are rigid,bulky,and thick or achieve high flexibility to wear but lose precision.Here,we construct highly bending-insensitive,unpixelated,and waterproof epidermal interfaces(BUW epidermal interfaces)and demonstrate their interactive applications of conformal human–machine integration.The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection,high flexibility,rapid response time,excellent stability,and versatile“cut-and-paste”character.Regardless of whether being flat or bent,the BUW epidermal interface can be conformally attached to the human skin for real-time,comfortable,and unrestrained interactions.This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics,which offers a new technology route and may further broaden human–machine interactions toward metaverse.
基金supported by the Science and Technology Commission of Shanghai Municipality(STCSM)Research Fund(21JC1405300)to Fan Minthe National Key Research and Development Program of China(2018YFC0831102)sponsored by the Shanghai Key Research Laboratory of NSAI。
文摘The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-computer interface(BCI)to awareness detection with a passive auditory stimulation paradigm.12 subjects with normal hearing were invited to collect electroencephalogram(EEG)based on a BCI communication system,in which EEG signals are transmitted wirelessly.After necessary preprocessing,RBF-SVM and EEGNet were used for algorithm realization and analysis.For a single subject,RBF-SVM can distinguish his(her)name stimuli awareness with classification accuracies ranging from 60-95%.EEGNet was used to learn all subjects'data and improved accuracy to 78.04%for characteristics finding and model generalization.Moreover,we completed the supplementary analysis work from the time domain and time-frequency domain.This study applied BCI communication to human awareness detection,proposed a passive auditory paradigm,and proved the effectiveness,which could be an inspiration for brain,mental or physical diseases diagnosis and detection.
文摘This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.
文摘As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.
文摘The Brain-Computer Interfaces(BCIs)had been proposed and used in therapeutics for decades.However,the need of time-consuming calibration phase and the lack of robustness,which are caused by little-labeled data,are restricting the advance and application of BCI,especially for the BCI based on motor imagery(MI).In this paper,we reviewed the recent development in the machine learning algorithm used in the MI-based BCI,which may provide potential solutions for addressing the issue.We classified these algorithms into two categories,namely,and enhancing the representation and expanding the training set.Specifically,these methods of enhancing the representation of features collected from few EEG trials are based on extracting features of multiple bands,regularization,and so on.The methods of expanding the training dataset include approaches of transfer learning(session to session transfer,subject to subject transfer)and generating artificial EEG data.The result of these techniques showed the resolution of the challenges to some extent.As a developing research area,the study of BCI algorithms in little-labeled data is increasingly requiring the advancement of human brain physiological structure research and more transfer learning algorithms research.
基金support.J.C.also acknowledges the Hellman Fellows Research Grant,the UCLA Pandemic Resources Program Research Award,the Research Recovery Grant by the UCLA Academic Senate,and the Brain&Behavior Research Foundation Young Investigator Grant(Grant Number:30944)the Catalyzing Pediatric Innovation Grant(Grant Number:47744)from the West Coast Consortium for Technology&Innovation in Pediatrics,Children’s Hospital Los Angeles.
文摘The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.
基金Foundation item: Supported bY the Natural Science Foundation of Ningxia(NZ09204) Supported by the Youth Foundation of Ningxia Teacher's Universlty(QN2010002)
文摘A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthermore,the existence of Hopf-zero bifurcation is discussed.In the end,some numerical simulations are carried out to illustrate the results found.
文摘A system that allows computer interaction by disabled people with very low mobility and who cannot use the standard procedure based on keyboard and mouse is presented. The development device uses the patient’s voluntary biomechanical signals, specifically, winks—which constitute an ability that generally remains in this kind of patients—, as interface to control the computer. A prototype based on robust and low-cost elements has been built and its performance has been validated through real trials by 16 users without previous training. The system can be optimized after a learning period in order to be adapted to every user. Also, good results were obtained in a subjective satisfaction survey that was completed by the users after carrying out the test trials.
基金Research and Development Program of Xi’an Modern Chemistry Research Institute of Chnia(Grant No.204J201916234/6)Key Project of Liuzhou Science and Technology Bureau of China(Grant No.2020PAAA0601).
文摘Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.
文摘Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which can beused to control other IoT devices. Classification of hand movements will beone step closer to applying these algorithms in real-life situations using EEGheadsets. This paper uses different feature extraction techniques and sophisticatedmachine learning algorithms to classify hand movements from EEG brain signalsto control prosthetic hands for amputated persons. To achieve good classificationaccuracy, denoising and feature extraction of EEG signals is a significant step. Wesaw a considerable increase in all the machine learning models when the movingaverage filter was applied to the raw EEG data. Feature extraction techniques likea fast fourier transform (FFT) and continuous wave transform (CWT) were usedin this study;three types of features were extracted, i.e., FFT Features, CWTCoefficients and CWT scalogram images. We trained and compared differentmachine learning (ML) models like logistic regression, random forest, k-nearestneighbors (KNN), light gradient boosting machine (GBM) and XG boost onFFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFTfeatures gave the maximum accuracy of 88%.
文摘A digital man-machine interaction system controlled by communications between two processors of TMS320F240 and AT98C2051 was researched in the paper. The system is easy to set and modify welding process parameters by keyboards, and display information of welding site by LCD (Liquid Crystal Display). As one part of multi-task system about TIG welding machine, the coordination of man-machine interaction system with other tasks is the main point to the stability and reliability of its operation. Experiments result indicates that the system is stable, operation-flexible, high precision, and anti-interfering.
文摘Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional feature design of dashboard is the analysis of man-machine interface, and visual organization effect design of dashboard is a branch of industrial design, both of them interact and unite.
文摘This study explores the significance,current research landscape,and conceptualization of sports safety promotion.Safety in sports is fundamental to youth physical activities,and an excessive focus on or neglect of safety is unwarranted.Globally,numerous countries have extensively researched sports safety promotion and implemented diverse strategies.Drawing from KABP(Knowledge,Attitude,Behavior,Practice)theory and 4M(Man,Machine,Medium,Management)management,this paper presents a conceptual framework for sports safety promotion.It integrates these theories to devise a comprehensive accident prevention model within a sports safety promotion system.The framework prioritizes enhancing students’safety literacy and underscores the practical application of safety knowledge and skills in simulated sports settings following structured safety education.It aims to enhance students’competency and proficiency in averting sports-related injuries.