A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthe...A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthermore,the existence of Hopf-zero bifurcation is discussed.In the end,some numerical simulations are carried out to illustrate the results found.展开更多
A digital man-machine interaction system controlled by communications between two processors of TMS320F240 and AT98C2051 was researched in the paper. The system is easy to set and modify welding process parameters by ...A digital man-machine interaction system controlled by communications between two processors of TMS320F240 and AT98C2051 was researched in the paper. The system is easy to set and modify welding process parameters by keyboards, and display information of welding site by LCD (Liquid Crystal Display). As one part of multi-task system about TIG welding machine, the coordination of man-machine interaction system with other tasks is the main point to the stability and reliability of its operation. Experiments result indicates that the system is stable, operation-flexible, high precision, and anti-interfering.展开更多
Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional fe...Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional feature design of dashboard is the analysis of man-machine interface, and visual organization effect design of dashboard is a branch of industrial design, both of them interact and unite.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe...Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously.展开更多
with the rapid development of hi-tech at present, the college English curriculum teaching of higher education in our country faces an inevitable deep reform and innovation. In order to effectively improve the English ...with the rapid development of hi-tech at present, the college English curriculum teaching of higher education in our country faces an inevitable deep reform and innovation. In order to effectively improve the English application ability of undergraduates, this paper analyzes the integration of interpersonal teaching and man-machine teaching in college English, illustrates the connotation and the current situation of interpersonal and man-machine teaching and makes deep research of integration of these two teaching modes. The author proposes to fully exert the features and advantages of interpersonal teaching and multi-media teaching and hopes to improve the teaching quality of college English through the analysis and research of this paper.展开更多
In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standa...In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standard of social knowledge level and competition intensifi es,more and more people have a goal to build a lifelong learning system, according to their own hobbies, work and the needs of the marketcompetition. Under this condition, the vocational education is becoming more and more essential. This paper integrates the VR and man-machineinteractive concept to propose the new education paradigm that is innovative.展开更多
In this paper, we conduct research on the man-machine engineering theory and the applications on furniture design and interior decoration design. Furniture is one of the important media, contacts and relationships bet...In this paper, we conduct research on the man-machine engineering theory and the applications on furniture design and interior decoration design. Furniture is one of the important media, contacts and relationships between building it by their own different shape and size provide comfortable environment for people. Ergonomics is the study of human activity and the claim size on the surrounding environment, how to make furniture to better serve people' s life and work. Our research proposed novel paradigm of the man-machine engineering theory which is meaningful.展开更多
The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,esp...The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.展开更多
Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers....Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.展开更多
Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between th...Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between the control and communication components.To improve the system's overall performance,exploring the co-design of communication and control systems is crucial.In this work,we propose a new metric±Age of Loop Information with Flexible Transmission(AoLI-FT),which dynamically adjusts the maximum number of uplink(UL)and downlink(DL)transmission rounds,thus enhancing reliability while ensuring timeliness.Our goal is to explore the relationship between AoLI-FT,reliability,and control convergence rate,and to design optimal blocklengths for UL and DL that achieve the desired control convergence rate.To address this issue,we first derive a closed-form expression for the upper bound of AoLI-FT.Subsequently,we establish a relationship between communication reliability and control convergence rates using a Lyapunov-like function.Finally,we introduce an iterative alternating algorithm to determine the optimal communication and control parameters.The numerical results demonstrate the significant performance advantages of our proposed communication and control co-design strategy in terms of latency and control cost.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s...To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.展开更多
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).展开更多
Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the ci...Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.展开更多
基金Foundation item: Supported bY the Natural Science Foundation of Ningxia(NZ09204) Supported by the Youth Foundation of Ningxia Teacher's Universlty(QN2010002)
文摘A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthermore,the existence of Hopf-zero bifurcation is discussed.In the end,some numerical simulations are carried out to illustrate the results found.
文摘A digital man-machine interaction system controlled by communications between two processors of TMS320F240 and AT98C2051 was researched in the paper. The system is easy to set and modify welding process parameters by keyboards, and display information of welding site by LCD (Liquid Crystal Display). As one part of multi-task system about TIG welding machine, the coordination of man-machine interaction system with other tasks is the main point to the stability and reliability of its operation. Experiments result indicates that the system is stable, operation-flexible, high precision, and anti-interfering.
文摘Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional feature design of dashboard is the analysis of man-machine interface, and visual organization effect design of dashboard is a branch of industrial design, both of them interact and unite.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported by the National Natural Science Foundation of China[No.51820105010 and 51888103]support from Jiangsu Province(No.BK20202008,BE2022024,BE2022602,BK20220001,BK20220009,and BK20220077).
文摘Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously.
文摘with the rapid development of hi-tech at present, the college English curriculum teaching of higher education in our country faces an inevitable deep reform and innovation. In order to effectively improve the English application ability of undergraduates, this paper analyzes the integration of interpersonal teaching and man-machine teaching in college English, illustrates the connotation and the current situation of interpersonal and man-machine teaching and makes deep research of integration of these two teaching modes. The author proposes to fully exert the features and advantages of interpersonal teaching and multi-media teaching and hopes to improve the teaching quality of college English through the analysis and research of this paper.
文摘In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standard of social knowledge level and competition intensifi es,more and more people have a goal to build a lifelong learning system, according to their own hobbies, work and the needs of the marketcompetition. Under this condition, the vocational education is becoming more and more essential. This paper integrates the VR and man-machineinteractive concept to propose the new education paradigm that is innovative.
文摘In this paper, we conduct research on the man-machine engineering theory and the applications on furniture design and interior decoration design. Furniture is one of the important media, contacts and relationships between building it by their own different shape and size provide comfortable environment for people. Ergonomics is the study of human activity and the claim size on the surrounding environment, how to make furniture to better serve people' s life and work. Our research proposed novel paradigm of the man-machine engineering theory which is meaningful.
文摘[目的]研究庆阳驴养殖群体的遗传多样性与母系起源,了解其遗传信息,为保护庆阳驴种质资源、选育和遗传改良工作提供理论依据。[方法]随机选取133头庆阳驴,对其线粒体DNA(mitochondrial DNA,mtDNA)D-loop区序列进行PCR扩增、测序及比对,并探讨庆阳驴的遗传多样性与母系起源。[结果]在获得的520 bp D-loop碱基序列中,AT含量(57.3%)高于GC含量(42.8%),表现出碱基的偏倚性;检测到38个变异位点,包含8个碱基对的转换;其核苷酸多样性(Pi)、单倍型多样性(Hd)、平均核苷酸差异(K)分别为0.01591、0.895和8.274,与欧洲家驴和中国家驴研究的平均值相比较低,说明该驴品种核苷酸变异较为贫乏。庆阳驴mtDNA D-loop区存在35个单倍型,单倍型之间的遗传距离为0.002~0.042。系统进化结果显示,庆阳驴存在2个线粒体支系,表明其具有2个母系起源,且遗传距离表明,庆阳驴与克罗地亚家驴之间的遗传距离较近。[结论]本研究从分子水平初步揭示庆阳驴核苷酸变异比较贫乏,杂交程度高,mtDNA遗传多态性正逐步丧失,应加强庆阳驴品种的遗传资源保护工作。
文摘The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.
基金the SINOPEC Research and Development Project(No.JR22094).
文摘Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.
基金supported in part by the National Key R&D Program of China under Grant 2024YFE0200500in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515012615in part by the Department of Science and Technology of Guangdong Province under Grant 2021QN02X491。
文摘Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between the control and communication components.To improve the system's overall performance,exploring the co-design of communication and control systems is crucial.In this work,we propose a new metric±Age of Loop Information with Flexible Transmission(AoLI-FT),which dynamically adjusts the maximum number of uplink(UL)and downlink(DL)transmission rounds,thus enhancing reliability while ensuring timeliness.Our goal is to explore the relationship between AoLI-FT,reliability,and control convergence rate,and to design optimal blocklengths for UL and DL that achieve the desired control convergence rate.To address this issue,we first derive a closed-form expression for the upper bound of AoLI-FT.Subsequently,we establish a relationship between communication reliability and control convergence rates using a Lyapunov-like function.Finally,we introduce an iterative alternating algorithm to determine the optimal communication and control parameters.The numerical results demonstrate the significant performance advantages of our proposed communication and control co-design strategy in terms of latency and control cost.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.
基金National Natural Science Foundation of China(Grant Nos:22038011,51976168)K.C.Wong Education Foundation,the Natural Science Basic Research Program of Shaanxi(Program No.2021JLM-17)+1 种基金Programme of Introducing Talents of Discipline to Universities(B23025)Innovation Capability Support Program of Shaanxi(Program Nos:2023KJXX-004,2023-CX-TD-26,2022KXJ-126).
文摘To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).
基金supported by the National Natural Science Foundation of China(Grant Nos.82073276 and 82273100)Science and Technology Project of Tianjin Binhai New Area Health Commission(Grant No.2022BWKY016)the China Digestive Tumor Clinical Scientific Research Public Welfare Project(Grant No.P014-058).
文摘Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.