期刊文献+
共找到528篇文章
< 1 2 27 >
每页显示 20 50 100
Development and Investigation of a Miniature Copper-Acetone Loop Heat Pipe with a Flat Evaporator 被引量:3
1
作者 Yury F. Maydanik Vladimir G. Pastukhov Mariya A. Chernysheva 《Journal of Electronics Cooling and Thermal Control》 2015年第4期77-88,共12页
The paper presents the results of development and investigation of a copper miniature loop heat pipe (LHP) with acetone as a working fluid. The device was equipped with a flat evaporator measuring 80 × 42 × ... The paper presents the results of development and investigation of a copper miniature loop heat pipe (LHP) with acetone as a working fluid. The device was equipped with a flat evaporator measuring 80 × 42 × 7 mm and vapor and liquid lines with an outside diameter of 3 mm, whose lengths were 145 mm and 175 mm, respectively. The LHP was tested at heat loads from 5 W to 60 W, different orientations in the gravity field and heat-sink temperatures from -40°C to +50°C. It is shown that the LHP retains its efficiency at all testing conditions. It is also mentioned that at a heat-sink temperature of +50°C the device operates in the mode of constant conductivity in the whole range of heat loads, and in this case a minimum thermal resistance of the “heat source-heat sink” system equal to 0.16°C/W is achieved, which is independent of the LHP orientation in the gravity field. 展开更多
关键词 loop Heat pipe FLAT EVAPORATOR Copper-Acetone Different Orientation
下载PDF
Visual Study on Flow and Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes 被引量:2
2
作者 杨洪海 Groll Manfred Khandekar Sameer 《Journal of Donghua University(English Edition)》 EI CAS 2009年第1期80-84,共5页
This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d... This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed. 展开更多
关键词 flat plate closed loop pulsating heat pipes fill ratio flow patterns operational characteristics
下载PDF
Parametric Influence on Thermal Performance of Flat Plate Closed Loop Pulsating Heat Pipes 被引量:2
3
作者 杨洪海 KHANDEKAR Sameer GROLL Manfred 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期8-13,共6页
This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum... This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved. 展开更多
关键词 flat plate closed loop pulsating heat pipes parametric influences heat transfer characteristics.
下载PDF
Experiment investigation on visualization and operating characteristics of closed loop plate oscillating heat pipe with parallel channels 被引量:1
4
作者 SHI Wei-xiu PAN Li-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2410-2418,共9页
Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop pl... Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments. 展开更多
关键词 closed loop with parallel channels plate oscillating heat pipe VISUALIZATION temperature oscillating heat transfer performance filling ratio section scale
下载PDF
Numerical Study of Thermal Performance of a Capillary Evaporator in a Loop Heat Pipe with Liquid-Saturated Wick 被引量:1
5
作者 Masahito Nishikawara Hosei Nagano +1 位作者 Laetitia Mottet Marc Prat 《Journal of Electronics Cooling and Thermal Control》 2014年第4期118-127,共10页
Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick,... Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary. 展开更多
关键词 CAPILLARY EVAPORATOR loop HEAT pipe Numerical Simulation PORE Network Model TWO-PHASE HEAT Transfer
下载PDF
Investigation of Geometric Factors of Convex Platforms in the Flat Evaporator of Loop Heat Pipes
6
作者 Ge Zhang Wenshuai Miao +2 位作者 Li Liu Yingying Hong Jiao Bai 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第6期90-96,共7页
This paper investigated the influence of geometric factors of vapor groove structures on the performance of flat evaporator of a loop heat pipe system. COMSOL multiphysics software was employed to simulate the heat tr... This paper investigated the influence of geometric factors of vapor groove structures on the performance of flat evaporator of a loop heat pipe system. COMSOL multiphysics software was employed to simulate the heat transfer in the evaporator with convex platforms of different shapes,sizes and area ratios(φ)between convex platforms and the heated surface. The maximum temperature and temperature distribution of each model were obtained. The results showed that the decrease of the size of platforms and the increase of φ can lower temperatures and improve temperature distribution homogeneity of the heated surface. Compared with circle and oval platforms,square platforms achieved lower temperature. The results also indicated that φ had the most significant impact on the performance of the evaporator. 展开更多
关键词 loop heat pipe FLAT EVAPORATOR vapor GROOVE structure GEOMETRIC factor
下载PDF
Mass-Spring-Damper Model with Steady State Parameters for Predicting the Movement of Liquid Column and Temperature Oscillation in Loop Heat Pipe
7
作者 Ge Zhang Di Chen +1 位作者 Yingying Hong Li Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第5期82-89,共8页
In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model wa... In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady. 展开更多
关键词 loop heat pipe temperature oscillation DISPLACEMENT mass-spring-da^nper model steady state para^neters
下载PDF
Experimental Investigation on the Effection of Flow Regulator in a Multiple Evaporators/Condensers Loop Heat Pipe with Plastic Porous Structure
8
作者 Xinyu Chang H. Nagano 《Journal of Power and Energy Engineering》 2014年第9期49-56,共8页
Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multipl... Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0&deg;C/60&deg;C and the two evaporators’ heat load 30/30 W. 展开更多
关键词 Flow REGULATOR loop HEAT pipe MULTIPLE Evaporators and CONDENSERS Two-Phase HEAT Transfer
下载PDF
Two-Phase Flow Modeling in a Single Closed Loop Pulsating Heat Pipes
9
作者 杨洪海 Sameer Khandekar +1 位作者 Sanka V. V.S. N.S. Manyam Manfred Groll 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期439-444,共6页
Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far re... Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phase flow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent ‘open flow’ system. The model allows prediction of two-phase flow parameters in each sub-section of the device thereby providing important insights into its operation. The concept of ‘void fraction constraint’ in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined. 展开更多
关键词 Closed loop pulsating heat pipe flow modeling parametric influences
下载PDF
Testing of a Low-Cost Loop Heat Pipe Design
10
作者 Cosimo Buffone 《Journal of Electronics Cooling and Thermal Control》 2014年第1期33-38,共6页
This paper presents and describes the test campaign of a low-cost Loop Heat Pipes (LHP) design. LHP have been around for many decades now. Their potential as passive heat transfer devices has been widely demonstrated ... This paper presents and describes the test campaign of a low-cost Loop Heat Pipes (LHP) design. LHP have been around for many decades now. Their potential as passive heat transfer devices has been widely demonstrated in numerous both ground- and space-based applications. One of the major disadvantages of LHP is their inherent high manufacturing cost;this is the main factor why LHP are still confined to niche/high end applications such as thermal management of spacecrafts. This paper proposes to use an alternative manufacturing design for the LHP evaporator, which is the main contributor to the overall LHP cost. Preliminary thermal results are also reported and briefly explained. Future work is needed to confirm the promising results discussed in this paper and address fully other issues such as tolerance of this LHP design to vibrations and accelerations typical of space missions. 展开更多
关键词 loop HEAT pipe Low COST EVAPORATOR
下载PDF
Operating Characteristics of Multiple Evaporators and Multiple Condensers Loop Heat Pipe with Polytetrafluoroethylene Wicks
11
作者 Sho Okutani Hosei Nagano +2 位作者 Shun Okazaki Hiroyuki Ogawa Hiroki Nagai 《Journal of Electronics Cooling and Thermal Control》 2014年第1期22-32,共11页
This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condens... This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it. 展开更多
关键词 loop HEAT pipe MULTIPLE Evaporators MULTIPLE CONDENSERS Thermal Control TWO-PHASE HEAT Transfer
下载PDF
Experimental Investigation of Loop Heat Pipe with Two Evaporators/Two Condensers under Thermal Vacuum Condition
12
作者 Xinyu Chang Hosei Nagano 《Journal of Applied Mathematics and Physics》 2016年第8期1460-1469,共10页
Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia... Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia. Asmall multiple loop heat pipe with two evaporators and two ra- diators was designed and fabricated. Then thermal vacuum test was conducted. The heaters were fasten on both evaporators, both radiators, both compensation chambers. In the case that both evaporators were heated, the multiple loop heat pipe can transport 120/120 W for 1.5 m, in the case that only one evaporator was heated, evaporator 1 can transport 80 W for 1.5 m, while eva- porator 2 can transport 120 W for 1.5 m. Two flow regulators were installed near the confluence of liquid line to prevent uncondensed vapor penetrating into returning liquid when the tempera- ture difference exists between two radiators. In the case that the heat load at both evaporators were 40/40 W and one radiator was heated, the flow regulator1 can tolerate the 160 W of heat load which was supplied to radiator1 while the flow regulator2 can tolerate the 100 W of heat load which was supplied to radiator2. To demonstrate the multiple loop heat pipe’s startup behavior at lowheat load, each of the compensation chamber was preheated to change the initial distribution of liquid and vapor in the evaporator and compensation chamber, in the result, each evaporator can start up at 5W through preheating. 展开更多
关键词 loop Heat pipe AMMONIA Thermal Vacuum Test Two Phase Flow
下载PDF
Heat Transfer and Flow Analysis in Loop Heat Pipe with Multiple Evaporators Using Network Model
13
作者 Shigeki Hirasawa Tsuyoshi Kawanami Katsuaki Shirai 《Journal of Mechanics Engineering and Automation》 2016年第7期319-325,共7页
Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop hea... Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators. 展开更多
关键词 loop heat pipe multiple evaporators thermal conductance network model analysis two phase flow.
下载PDF
Microscale Infrared Observation of Liquid-Vapor Phase Change Process on the Surface of Porous Media for Loop Heat Pipe
14
作者 Kimihide Odagiri Masahito Nishikawara Hosei Nagano 《Journal of Electronics Cooling and Thermal Control》 2016年第2期33-41,共9页
Loop Heat Pipe (LHP) performance strongly depends on the performance of a wick that is porous media inserted in an evaporator. In this paper, the visualization results of thermo-fluid behavior on the surface of the wi... Loop Heat Pipe (LHP) performance strongly depends on the performance of a wick that is porous media inserted in an evaporator. In this paper, the visualization results of thermo-fluid behavior on the surface of the wick with microscopic infrared thermography were reported. In this study, 2 different samples that simulated a part of wick in the evaporator were used. The wicks were made by different two materials: polytetrafluoroethylene (PTFE) and stainless steel (SUS). The pore radii of PTFE wick and SUS wick are 1.2 μm and 22.5 μm. The difference of thermo-fluid behavior that was caused by the difference of material was investigated. These two materials include 4 different properties: pore radius, thermal conductivity, permeability and porosity. In order to investigate the effect of the thermal conductivity on wick’s operating mode, the phase diagram on the q-k<sub>eff</sub> plane was made. Based on the temperature line profiles, two operating modes: mode of heat conduction and mode of convection were observed. The effective thermal conductivity of the porous media has strong effect on the operating modes. In addition, the difference of heat leak through the wick that was caused by the difference of the material was discussed. 展开更多
关键词 Evaporator Liquid-Vapor Phase Change loop Heat pipe Microscale Infrared Observation Porous Media
下载PDF
Performance of an R410a Filled Loop Heat Pipe Heat Exchanger
15
作者 K.S. Ong 《Journal of Energy and Power Engineering》 2011年第1期1-9,共9页
A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loo... A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment. 展开更多
关键词 loop heat pipe heat exchanger R410A multiple rows effectiveness-NTU model overall effectiveness.
下载PDF
基于钎焊工艺的环路热管耦合系统设计及验证
16
作者 孟恒辉 徐亚威 +6 位作者 韩东阳 刘鑫 耿利寅 张庆君 刘立平 张红星 王玉莹 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第5期57-65,共9页
随着航天技术的发展,航天器的功能集成度提升,对系统散热要求越来越高。环路热管作为一种两相态高效传热部件,具备远距离、逆重力、布局灵活等特点,常应用于单一热源下的定向热量传输;对于多点热源的复杂环境,环路热管系统稳定性差,一... 随着航天技术的发展,航天器的功能集成度提升,对系统散热要求越来越高。环路热管作为一种两相态高效传热部件,具备远距离、逆重力、布局灵活等特点,常应用于单一热源下的定向热量传输;对于多点热源的复杂环境,环路热管系统稳定性差,一般很难适应。针对复杂空间热流下多点分散热源的散热需求,设计了一种基于钎焊工艺的环路热管强耦合热管理系统,对关键耦合参数进行了敏感性分析,并开展了相关试验,验证了界面低热阻、强耦合等关键技术的可行性,提升平台散热能力达52%。环路热管实现了在陆地探测四号01星载荷舱上的应用,为国际首次在平台系统的大规模应用,载荷舱散热能力由4 kW提升到6 kW,为大功率固态放大器提供0~20℃在轨温度环境。环路热管突破了在平台应用的约束限制,为后续环路热管的热耦合系统设计提供借鉴。 展开更多
关键词 环路热管 航天器 热耦合 换热 热管理 钎焊
下载PDF
光学舱推进剂补加过程的热分析仿真与试验研究
17
作者 卢威 张宁莉 +2 位作者 王帅 丰茂龙 范含林 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第3期498-505,共8页
推进剂补加是确保光学舱在轨长寿命工作的重要功能,补加过程面临的热环境条件比以往任务恶劣,全过程热控制十分必要。针对光学舱推进剂补加过程的复杂传热新问题,建立包含压气机、液冷模块和环路热管等部件的光学舱平台集成热数学模型,... 推进剂补加是确保光学舱在轨长寿命工作的重要功能,补加过程面临的热环境条件比以往任务恶劣,全过程热控制十分必要。针对光学舱推进剂补加过程的复杂传热新问题,建立包含压气机、液冷模块和环路热管等部件的光学舱平台集成热数学模型,进行热分析仿真研究,并开展系统级热试验。对比高温和低温2种补加条件的瞬态热分析和热试验结果,研究传热关系和温度变化规律;针对热试验中垂直热管因重力因素从不运行至运行的瞬态过程,提出一种变热导率仿真方法;提出高温补加优化设计方案并进行在轨预示。结果表明:瞬态仿真结果与试验结果吻合良好,验证了热分析方法和仿真模型的准确性和有效性;在轨补加采用压气机本体预热并启动2套环路热管,压气机的最高温度≤34.1℃,预热总功耗50 Wh,满足指标要求。研究结果对于光学舱停靠空间站期间的推进剂补加流程设计具有一定参考价值。 展开更多
关键词 光学舱 推进剂补加 热控制 热分析 压气机 液冷模块 环路热管
下载PDF
倾角对平板型LHP 运行性能的影响 被引量:1
18
作者 刘念 唐永乐 +1 位作者 张学伟 盖东兴 《节能》 2024年第4期57-60,共4页
通过改变内部毛细芯结构达到改善环路热管性能、减小环路热管体积的目的,取消储液腔,将传统的长矩形蒸汽槽道更改为特斯拉阀形状,并且将蒸发器进出口设置在蒸发器两侧。研究该热管在不同倾角下的启动性能、运行特性。结果显示:相对于0&#... 通过改变内部毛细芯结构达到改善环路热管性能、减小环路热管体积的目的,取消储液腔,将传统的长矩形蒸汽槽道更改为特斯拉阀形状,并且将蒸发器进出口设置在蒸发器两侧。研究该热管在不同倾角下的启动性能、运行特性。结果显示:相对于0°倾角运行,倾角的存在能够减少环路热管的启动时间,降低蒸发器温度,存在倾角的条件下启动特性差别不大。随着功率的增加,不同倾角的环路热管热阻减小,仅在倾角(10°以下)较低时有较大的热阻。随着倾角的增加,环路热管热阻随功率的变化无较大改变。 展开更多
关键词 平板型环路热管 倾角 相变传热 传热特性
下载PDF
基于厚壁圆筒理论的袖阀管注浆开环压力计算方法及影响因素分析
19
作者 郭佳奇 杨浩楠 +2 位作者 王建业 徐鹏飞 冯小江 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期173-182,共10页
目的袖阀管注浆技术已广泛应用于地层加固、路基病害治理、地铁站渗漏水处治等众多工程领域,然而袖阀管注浆的关键技术—开环压力的确定问题目前尚未有效解决。为解决此问题,方法基于厚壁圆筒理论模型,提出任意倾斜状态下袖阀管出浆口... 目的袖阀管注浆技术已广泛应用于地层加固、路基病害治理、地铁站渗漏水处治等众多工程领域,然而袖阀管注浆的关键技术—开环压力的确定问题目前尚未有效解决。为解决此问题,方法基于厚壁圆筒理论模型,提出任意倾斜状态下袖阀管出浆口地层应力计算方法,结合第四强度准则,建立考虑多因素综合影响的袖阀管注浆开环压力理论计算公式,并进行开环压力影响因素分析。结果结果表明,袖阀管注浆开环压力随套壳料抗压强度、套壳料与土体泊松比比值、注浆深度、地层最小与最大水平主应力比值的增大而增大,随着套壳料内外半径比、套壳料与土体弹性模量比的增大而减小。套壳料抗压强度、套壳料内外半径比、注浆深度和注浆钻孔方向对开环压力的影响较显著。注浆钻孔方向对开环压力影响较大,α一定时,开环压力随β增大而减小;β一定时,开环压力随α增大而增大。将本文建立的袖阀管注浆开环压力计算公式应用于新建大冶北至阳新铁路DK107+105框架顶进涵工程,并与现有开环压力计算方法进行对比,利用本文方法计算得到的开环压力值更接近现场实测范围,并优于现有计算方法。结论研究结果可为袖阀管注浆理论发展和现场应用提供支持。 展开更多
关键词 袖阀管注浆 套壳料 厚壁圆筒理论 开环压力
下载PDF
35 K空间深低温热传输系统性能天地差异
20
作者 郭元东 刘思学 +3 位作者 张红星 苗建印 赵建福 林贵平 《空间科学学报》 CAS CSCD 北大核心 2024年第1期114-121,共8页
为了解决空间红外探测系统的深低温散热问题,保证红外探测器的低温工作环境,基于脉冲管制冷机和深冷环路热管,设计研制了一套35 K温区的深低温获取与热传输集成系统.该系统由一套35 K温区氖工质深冷环路热管、两台35 K温区脉冲管制冷机... 为了解决空间红外探测系统的深低温散热问题,保证红外探测器的低温工作环境,基于脉冲管制冷机和深冷环路热管,设计研制了一套35 K温区的深低温获取与热传输集成系统.该系统由一套35 K温区氖工质深冷环路热管、两台35 K温区脉冲管制冷机、一台150 K温区脉冲管制冷机、隔热冷屏、测温/加热组件、控制系统等组成.完成了地面单机级、整星级热真空测试,并于2020年完成空间飞行测试.在地面单机试验中开展了水平姿态和逆重力恶劣姿态下的传热测试,保证了空间微重力下必定能稳定工作;整星级测试验证了系统在卫星平台散热工况下的工作特性,空间飞行测试获得了系统的空间微重力下的工作性能.本文分析了系统在上述不同阶段的热性能,包括超临界启动特性,稳态运行性能等,验证了相关设计的正确性,重点对比了不同阶段的性能差异,分析其可能的原因. 展开更多
关键词 深低温集成系统 环路热管 脉冲管制冷机 传热性能 飞行试验
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部