Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to ...Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.展开更多
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to real...The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to realize the upgrading of the digital twin industrial chain,it is urgent to introduce more modalities,such as vision,haptics,hearing and smell,into the virtual digital space,which assists physical entities and virtual objects in creating a closer connection.Therefore,perceptual understanding and object recognition have become an urgent hot topic in the digital twin.Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality,ignoring the complementarity between multiple modalities.In order to overcome this dilemma,we propose a multimodal fusion network in our article that combines two modalities,visual and haptic,for surface material recognition.On the one hand,the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping.On the other hand,the network is extensible and can be used as a universal architecture to include more modalities.Experiments show that the constructed multimodal fusion network can achieve 99.42%classification accuracy while reducing complexity.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Con...The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Convolutional Block Attention Module (CBAM) has been developed. This algorithm initially employs the latest YOLOv8 for object recognition. Subsequently, the integration of CBAM enhances its feature extraction capabilities. Finally, the WIoU function is used to optimize the network’s bounding box loss, facilitating rapid convergence. Experimental validation using a smoke and fire dataset demonstrated that the proposed algorithm achieved a 2.3% increase in smoke and fire detection accuracy, surpassing other state-of-the-art methods.展开更多
Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor(CB1R)could affect novel object recognition(NOR)memory in chronically rapid eye movement sleep-deprived(RSD)rats.Methods The animals ...Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor(CB1R)could affect novel object recognition(NOR)memory in chronically rapid eye movement sleep-deprived(RSD)rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique.The CB1R antagonist rimonabant(1 or 3 mg/kg,i.p.)was administered either at one hour prior to the sample phase for acquisition,or immediately after the sample phase for consolidation,or at one hour before the test phase for retrieval of NOR memory.For the reconsolidation task,rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition,consolidation,and retrieval,but it did not affect the reconsolidation of NOR memory.Rimonabant administration did not affect acquisition,consolidation,and reconsolidation;however,it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings,along with our previous report,would seem to suggest that RSD may affect different phases of recognition memory based on its duration.Importantly,it seems that the CB1R may,at least in part,be involved in the adverse effects of chronic RSD on the retrieval,but not in the acquisition,consolidation,and reconsolidation,of NOR memory.展开更多
An object learning and recognition system is implemented for humanoid robots to discover and memorize objects only by simple interactions with non-expert users. When the object is presented, the system makes use of th...An object learning and recognition system is implemented for humanoid robots to discover and memorize objects only by simple interactions with non-expert users. When the object is presented, the system makes use of the motion information over consecutive frames to extract object features and implements machine learning based on the bag of visual words approach. Instead of using a local feature descriptor only, the proposed system uses the co-occurring local features in order to increase feature discriminative power for both object model learning and inference stages. For different objects with different textures, a hybrid sampling strategy is considered. This hybrid approach minimizes the consumption of computation resources and helps achieving good performances demonstrated on a set of a dozen different daily objects.展开更多
Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively a...Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.展开更多
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf...A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.展开更多
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We...The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.展开更多
In the field of traffic sign recognition,traffic signs usually occupy very small areas in the input image.Most object detection algorithms directly reduce the original image to a specific size for the input model duri...In the field of traffic sign recognition,traffic signs usually occupy very small areas in the input image.Most object detection algorithms directly reduce the original image to a specific size for the input model during the detection process,which leads to the loss of small object information.Addi-tionally,classification tasks are more sensitive to information loss than local-ization tasks.This paper proposes a novel traffic sign recognition approach,in which a lightweight pre-locator network and a refined classification network are incorporated.The pre-locator network locates the sub-regions of the traffic signs from the original image,and the refined classification network performs the refinement recognition task in the sub-regions.Moreover,an innovative module(named SPP-ST)is proposed,which combines the Spatial Pyramid Pool module(SPP)and the Swin-Transformer module as a new feature extractor to learn the special spatial information of traffic sign effec-tively.Experimental results show that the proposed method is superior to the state-of-the-art methods(82.1 mAP achieved on 218 categories in the TT100k dataset,an improvement of 19.7 percentage points compared to the previous method).Moreover,both the result analysis and the output visualizations further demonstrate the effectiveness of our proposed method.The source code and datasets of this work are available at https://github.com/DijiesitelaQ/TSOD.展开更多
This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion b...This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.展开更多
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy ...To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen.展开更多
Object recognition and tracking are two of the most dynamic research sub-areas that belong to the field of Computer Vision.Computer vision is one of the most active research fields that lies at the intersection of dee...Object recognition and tracking are two of the most dynamic research sub-areas that belong to the field of Computer Vision.Computer vision is one of the most active research fields that lies at the intersection of deep learning and machine vision.This paper presents an efficient ensemble algorithm for the recognition and tracking of fixed shapemoving objects while accommodating the shift and scale invariances that the object may encounter.The first part uses the Maximum Average Correlation Height(MACH)filter for object recognition and determines the bounding box coordinates.In case the correlation based MACH filter fails,the algorithms switches to a much reliable but computationally complex feature based object recognition technique i.e.,affine scale invariant feature transform(ASIFT).ASIFT is used to accommodate object shift and scale object variations.ASIFT extracts certain features from the object of interest,providing invariance in up to six affine parameters,namely translation(two parameters),zoom,rotation and two camera axis orientations.However,in this paper,only the shift and scale invariances are used.The second part of the algorithm demonstrates the use of particle filters based Approximate Proximal Gradient(APG)technique to periodically update the coordinates of the object encapsulated in the bounding box.At the end,a comparison of the proposed algorithm with other stateof-the-art tracking algorithms has been presented,which demonstrates the effectiveness of the proposed algorithm with respect to the minimization of tracking errors.展开更多
A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navi...A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experi- ments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for un- manned vehicle systems.展开更多
Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occ...Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.展开更多
Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate a...Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate and it is difficult to distinguish overlapping and occluded objects,the authors propose a network model with a second-order term attention mechanism and occlusion loss.First,the backbone network is built on CSPDarkNet53.Then a method is designed for the feature extraction network based on an item-wise attention mechanism,which uses the filtered weighted feature vector to replace the original residual fusion and adds a second-order term to reduce the information loss in the process of fusion and accelerate the convergence of the model.Finally,an objected occlusion regression loss function is studied to reduce the problems of missed detections caused by dense objects.Sufficient experimental results demonstrate that the authors’method achieved state-of-the-art performance without reducing the detection speed.The mAP@.5 of the method is 85.8%on the Foggy_cityscapes dataset and the mAP@.5 of the method is 97.8%on the KITTI dataset.展开更多
Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread a...Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets.展开更多
A complete 2-D object recognition algorithm applicable for both standalone and partial occluded object is presented. The main contributions in our work are: we developed a scale and partial occlusion invariant boundar...A complete 2-D object recognition algorithm applicable for both standalone and partial occluded object is presented. The main contributions in our work are: we developed a scale and partial occlusion invariant boundary partition algorithm and a multiresolution feature extraction algorithm using wavelet. We also implemented a hierarchical matching strategy for feature matching to reduce computational load,but increase matching accuracy. Experiment result shows proposed recognition algorithm is robust to similarity transform and partial occlusion.展开更多
基金supported by grants from the Ministerio de Economia y Competitividad(BFU2013-43458-R)Junta de Andalucia(P12-CTS-1694 and Proyexcel-00422)to ZUK。
文摘Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.
基金the National Natural Science Foundation of China(62001246,62001248,62171232)Key R&D Program of Jiangsu Province Key project and topics under Grant BE2021095+3 种基金the Natural Science Foundation of Jiangsu Province Higher Education Institutions(20KJB510020)the Future Network Scientific Research Fund Project(FNSRFP-2021-YB-16)the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(JZNY202110)the NUPTSF under Grant(NY220070).
文摘The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to realize the upgrading of the digital twin industrial chain,it is urgent to introduce more modalities,such as vision,haptics,hearing and smell,into the virtual digital space,which assists physical entities and virtual objects in creating a closer connection.Therefore,perceptual understanding and object recognition have become an urgent hot topic in the digital twin.Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality,ignoring the complementarity between multiple modalities.In order to overcome this dilemma,we propose a multimodal fusion network in our article that combines two modalities,visual and haptic,for surface material recognition.On the one hand,the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping.On the other hand,the network is extensible and can be used as a universal architecture to include more modalities.Experiments show that the constructed multimodal fusion network can achieve 99.42%classification accuracy while reducing complexity.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
文摘The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Convolutional Block Attention Module (CBAM) has been developed. This algorithm initially employs the latest YOLOv8 for object recognition. Subsequently, the integration of CBAM enhances its feature extraction capabilities. Finally, the WIoU function is used to optimize the network’s bounding box loss, facilitating rapid convergence. Experimental validation using a smoke and fire dataset demonstrated that the proposed algorithm achieved a 2.3% increase in smoke and fire detection accuracy, surpassing other state-of-the-art methods.
基金Supported by the Research Council of Kermanshah University of Medical Sciences,Kermanshah,Iran for financial support(grant no.:990812).
文摘Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor(CB1R)could affect novel object recognition(NOR)memory in chronically rapid eye movement sleep-deprived(RSD)rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique.The CB1R antagonist rimonabant(1 or 3 mg/kg,i.p.)was administered either at one hour prior to the sample phase for acquisition,or immediately after the sample phase for consolidation,or at one hour before the test phase for retrieval of NOR memory.For the reconsolidation task,rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition,consolidation,and retrieval,but it did not affect the reconsolidation of NOR memory.Rimonabant administration did not affect acquisition,consolidation,and reconsolidation;however,it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings,along with our previous report,would seem to suggest that RSD may affect different phases of recognition memory based on its duration.Importantly,it seems that the CB1R may,at least in part,be involved in the adverse effects of chronic RSD on the retrieval,but not in the acquisition,consolidation,and reconsolidation,of NOR memory.
基金The National Natural Science Foundation of China(No.60672094,60971098)
文摘An object learning and recognition system is implemented for humanoid robots to discover and memorize objects only by simple interactions with non-expert users. When the object is presented, the system makes use of the motion information over consecutive frames to extract object features and implements machine learning based on the bag of visual words approach. Instead of using a local feature descriptor only, the proposed system uses the co-occurring local features in order to increase feature discriminative power for both object model learning and inference stages. For different objects with different textures, a hybrid sampling strategy is considered. This hybrid approach minimizes the consumption of computation resources and helps achieving good performances demonstrated on a set of a dozen different daily objects.
基金supported by the Jilin Science and Technology Development Plan Project (Nos. 20160209006GX, 20170309001GX and 20180201043GX)
文摘Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.
文摘A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.
文摘The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.
基金supported by the Natural Science Foundation of Sichuan,China (No.2022NSFSC0571)the Sichuan Science and Technology Program (No.2018JY0273,No.2019YJ0532)+1 种基金supported by funding of V.C.&V.R.Key Lab of Sichuan Province (No.SCVCVR2020.05VS)supported by the China Scholarship Council (No.201908510026).
文摘In the field of traffic sign recognition,traffic signs usually occupy very small areas in the input image.Most object detection algorithms directly reduce the original image to a specific size for the input model during the detection process,which leads to the loss of small object information.Addi-tionally,classification tasks are more sensitive to information loss than local-ization tasks.This paper proposes a novel traffic sign recognition approach,in which a lightweight pre-locator network and a refined classification network are incorporated.The pre-locator network locates the sub-regions of the traffic signs from the original image,and the refined classification network performs the refinement recognition task in the sub-regions.Moreover,an innovative module(named SPP-ST)is proposed,which combines the Spatial Pyramid Pool module(SPP)and the Swin-Transformer module as a new feature extractor to learn the special spatial information of traffic sign effec-tively.Experimental results show that the proposed method is superior to the state-of-the-art methods(82.1 mAP achieved on 218 categories in the TT100k dataset,an improvement of 19.7 percentage points compared to the previous method).Moreover,both the result analysis and the output visualizations further demonstrate the effectiveness of our proposed method.The source code and datasets of this work are available at https://github.com/DijiesitelaQ/TSOD.
文摘This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.
文摘To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)and the Soonchunhyang University Research Fund.
文摘Object recognition and tracking are two of the most dynamic research sub-areas that belong to the field of Computer Vision.Computer vision is one of the most active research fields that lies at the intersection of deep learning and machine vision.This paper presents an efficient ensemble algorithm for the recognition and tracking of fixed shapemoving objects while accommodating the shift and scale invariances that the object may encounter.The first part uses the Maximum Average Correlation Height(MACH)filter for object recognition and determines the bounding box coordinates.In case the correlation based MACH filter fails,the algorithms switches to a much reliable but computationally complex feature based object recognition technique i.e.,affine scale invariant feature transform(ASIFT).ASIFT is used to accommodate object shift and scale object variations.ASIFT extracts certain features from the object of interest,providing invariance in up to six affine parameters,namely translation(two parameters),zoom,rotation and two camera axis orientations.However,in this paper,only the shift and scale invariances are used.The second part of the algorithm demonstrates the use of particle filters based Approximate Proximal Gradient(APG)technique to periodically update the coordinates of the object encapsulated in the bounding box.At the end,a comparison of the proposed algorithm with other stateof-the-art tracking algorithms has been presented,which demonstrates the effectiveness of the proposed algorithm with respect to the minimization of tracking errors.
基金Supported by the National Natural Science Foundation of China(61103157)Beijing Municipal Education Commission Project(SQKM201311417010)
文摘A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experi- ments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for un- manned vehicle systems.
基金Supported by National Natural Science Foundation ot China(60572100, 60673122), Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (60711130233), Science Foundation of Shenzhen City (CXQ2008019, 200706), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2008[890]).
基金a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT)Republic of Korea.This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding program Grant Code(NU/RG/SERC/12/6).
文摘Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.
基金Doctoral Talent Training Project of Chongqing University of Posts and Telecommunications,Grant/Award Number:BYJS202007Natural Science Foundation of Chongqing,Grant/Award Number:cstc2021jcyj-msxmX0941+1 种基金National Natural Science Foundation of China,Grant/Award Number:62176034Scientific and Technological Research Program of Chongqing Municipal Education Commission,Grant/Award Number:KJQN202101901。
文摘Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate and it is difficult to distinguish overlapping and occluded objects,the authors propose a network model with a second-order term attention mechanism and occlusion loss.First,the backbone network is built on CSPDarkNet53.Then a method is designed for the feature extraction network based on an item-wise attention mechanism,which uses the filtered weighted feature vector to replace the original residual fusion and adds a second-order term to reduce the information loss in the process of fusion and accelerate the convergence of the model.Finally,an objected occlusion regression loss function is studied to reduce the problems of missed detections caused by dense objects.Sufficient experimental results demonstrate that the authors’method achieved state-of-the-art performance without reducing the detection speed.The mAP@.5 of the method is 85.8%on the Foggy_cityscapes dataset and the mAP@.5 of the method is 97.8%on the KITTI dataset.
文摘Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets.
文摘A complete 2-D object recognition algorithm applicable for both standalone and partial occluded object is presented. The main contributions in our work are: we developed a scale and partial occlusion invariant boundary partition algorithm and a multiresolution feature extraction algorithm using wavelet. We also implemented a hierarchical matching strategy for feature matching to reduce computational load,but increase matching accuracy. Experiment result shows proposed recognition algorithm is robust to similarity transform and partial occlusion.