At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operati...WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.展开更多
In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork model...In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.展开更多
With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive o...With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive operations,a reasonable air defense weapon assignment strategy is a key step.In this paper,a multi-objective and multi-constraints weapon target assignment(WTA)model is established that aims to minimize the defensive resource loss,minimize total weapon consumption,and minimize the target residual effectiveness.An optimization framework of air defense weapon mission scheduling based on the multiobjective artificial bee colony(MOABC)algorithm is proposed.The solution for point-to-point saturated attack targets at different operational scales is achieved by encoding the nectar with real numbers.Simulations are performed for an imagined air defense scenario,where air defense weapons are saturated.The non-dominated solution sets are obtained by the MOABC algorithm to meet the operational demand.In the case where there are more weapons than targets,more diverse assignment schemes can be selected.According to the inverse generation distance(IGD)index,the convergence and diversity for the solutions of the non-dominated sorting genetic algorithm III(NSGA-III)algorithm and the MOABC algorithm are compared and analyzed.The results prove that the MOABC algorithm has better convergence and the solutions are more evenly distributed among the solution space.展开更多
On the basis of the principle of Ground Penetrating Radar (GPR) method and geophysical characteristics, this paper discusses in detail detection method of civil air defense distinguished by GPR under the complex geolo...On the basis of the principle of Ground Penetrating Radar (GPR) method and geophysical characteristics, this paper discusses in detail detection method of civil air defense distinguished by GPR under the complex geological condition through using the analysis and application in the survey of underground civil air defense as an example. Three dimensional image of the defense clearly reflects its underground structure. Test result has the greatly high detection precision. This example illustrates the effectiveness and practicability of GPR in the respect of detection of the civil air defense and also accumulates experiences for the application of GPR in urban geological survey.展开更多
A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damag...A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.展开更多
Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune s...Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.展开更多
The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time sch...The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.展开更多
This paper is a study of the quantitative evaluation on the cost-effectiveness of air defense surveillance radars. The composition of life cycle cost of the radar is analysed at first. Then the radar performance and e...This paper is a study of the quantitative evaluation on the cost-effectiveness of air defense surveillance radars. The composition of life cycle cost of the radar is analysed at first. Then the radar performance and effectiveness formulas are derived. By calculating the values of many radars' cost, performance and effectiveness, tendency curves are plotted. The application of cost-effectiveness calculation and the tendency curves in radar system analysis is discussed at last.展开更多
A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized su...A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized super-virus mode, it can effectively establish global control over large systems of any natures. The technology can use numerous scattered and dissimilar facilities in an integral and holistic way, allowing them to work together in goal-driven supercomputer mode. The approach can be useful for advanced air and missile defense in a variety of ways which is described and explained in this paper.展开更多
Model combat information conditions are always uncertain and varied, the uncertain interval theory is therefore introduced into the research of multiple fighters suppressing the integrated air defense system(IADS) pro...Model combat information conditions are always uncertain and varied, the uncertain interval theory is therefore introduced into the research of multiple fighters suppressing the integrated air defense system(IADS) problem. Considering that the combat information conditions are uncertain intervals, the payoff function of the game for multiple fighters suppressing the IADS is modeled.Using the operation rules for interval numbers and the possibility degree, an improved chaotic particle swarm optimization(CPSO)is designed to solve the proposed model so as to obtain the optimal game solution. Comparison simulations are performed to analyze the influence of the weapons consumption and the distances of non-escaped zone and jamming on air combat result. Simulation results suggest that Nash equilibrium is achieved and verify the effectiveness of the proposed method.展开更多
Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However...Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However, the atmospheric environment in key areas such as Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and Fenwei Plain is still severe, and especially during the heating period heavy pollution occurs frequently, which has become the focus and difficulty of improving the quality of the atmospheric environment and is also the weakest link of China s air pollution control at present. How to alleviate air pollution, how to win the battle of pollution prevention and control, how to hold the fruits of the blue sky defense war, energy consumption is key.展开更多
This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for anti-air radar screen. Therefore, we investigated the instances of anti-ai...This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for anti-air radar screen. Therefore, we investigated the instances of anti-air radar screen for air defense weapon system for defense advanced country. Based on the collected data, we compared and analyzed the air defense weapon system radar screen design. In addition, we carry out a research for layout, configuration, standardization and design of the radar screen’s elements. Ultimately, it is essential to share a variety of battle field conditions such as enemy threat, enemy/friendly information, terrain information that can be effectively recognized. In this paper, we conduct case study for ergonomically development of automated/standardized radar screen. It is expected that this research improves the situational awareness and reduces the user’s task load.展开更多
This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes application...This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.展开更多
美国定向能机动近程防空(directed energy maneuver-short range air defense,DE M-SHORAD)计划通过击伤、摧毁或压制旋转翼无人机、固定翼无人机以及火箭弹、火炮炮弹、迫击炮弹(rockets,artillery and mortar,RAM)等威胁目标,为机动...美国定向能机动近程防空(directed energy maneuver-short range air defense,DE M-SHORAD)计划通过击伤、摧毁或压制旋转翼无人机、固定翼无人机以及火箭弹、火炮炮弹、迫击炮弹(rockets,artillery and mortar,RAM)等威胁目标,为机动部队提供伴随防空,对抗新兴威胁,属于美国陆军防空反导现代化的优先项目之一。首先介绍了DE M-SHORAD研制计划;其次详细分析了系统结构,并由系统参数评估了系统的作战性能;最后梳理了系统的研制进展。通过综合分析可知,DE M-SHORAD系统采用最佳组件,通过快速原型方法实现激光武器系统在装甲车上的集成;为降低技术风险,该计划在发展方式上分为两个阶段,首先集成、测试2 kW~5 kW机动实验型高能激光器(mobile experimental high-energy laser,MEHEL),然后再研制50 kW级的多任务高能激光器(multi-mission high-energy laser,MMHEL)。经计算可得:MEHEL和MMHEL对无人机的最大射程分别约为0.77 km、4.8 km。展开更多
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
文摘WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.
基金supported by the National Natural Science Foundation of China(71771216).
文摘With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive operations,a reasonable air defense weapon assignment strategy is a key step.In this paper,a multi-objective and multi-constraints weapon target assignment(WTA)model is established that aims to minimize the defensive resource loss,minimize total weapon consumption,and minimize the target residual effectiveness.An optimization framework of air defense weapon mission scheduling based on the multiobjective artificial bee colony(MOABC)algorithm is proposed.The solution for point-to-point saturated attack targets at different operational scales is achieved by encoding the nectar with real numbers.Simulations are performed for an imagined air defense scenario,where air defense weapons are saturated.The non-dominated solution sets are obtained by the MOABC algorithm to meet the operational demand.In the case where there are more weapons than targets,more diverse assignment schemes can be selected.According to the inverse generation distance(IGD)index,the convergence and diversity for the solutions of the non-dominated sorting genetic algorithm III(NSGA-III)algorithm and the MOABC algorithm are compared and analyzed.The results prove that the MOABC algorithm has better convergence and the solutions are more evenly distributed among the solution space.
文摘On the basis of the principle of Ground Penetrating Radar (GPR) method and geophysical characteristics, this paper discusses in detail detection method of civil air defense distinguished by GPR under the complex geological condition through using the analysis and application in the survey of underground civil air defense as an example. Three dimensional image of the defense clearly reflects its underground structure. Test result has the greatly high detection precision. This example illustrates the effectiveness and practicability of GPR in the respect of detection of the civil air defense and also accumulates experiences for the application of GPR in urban geological survey.
文摘A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.
文摘Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.
基金Sponsored by Jiangsu Planned Project for Postdoctoral (0901014B)
文摘The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.
文摘This paper is a study of the quantitative evaluation on the cost-effectiveness of air defense surveillance radars. The composition of life cycle cost of the radar is analysed at first. Then the radar performance and effectiveness formulas are derived. By calculating the values of many radars' cost, performance and effectiveness, tendency curves are plotted. The application of cost-effectiveness calculation and the tendency curves in radar system analysis is discussed at last.
文摘A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized super-virus mode, it can effectively establish global control over large systems of any natures. The technology can use numerous scattered and dissimilar facilities in an integral and holistic way, allowing them to work together in goal-driven supercomputer mode. The approach can be useful for advanced air and missile defense in a variety of ways which is described and explained in this paper.
基金supported by the National Natural Science Foundation of China(616034116057317250875132)
文摘Model combat information conditions are always uncertain and varied, the uncertain interval theory is therefore introduced into the research of multiple fighters suppressing the integrated air defense system(IADS) problem. Considering that the combat information conditions are uncertain intervals, the payoff function of the game for multiple fighters suppressing the IADS is modeled.Using the operation rules for interval numbers and the possibility degree, an improved chaotic particle swarm optimization(CPSO)is designed to solve the proposed model so as to obtain the optimal game solution. Comparison simulations are performed to analyze the influence of the weapons consumption and the distances of non-escaped zone and jamming on air combat result. Simulation results suggest that Nash equilibrium is achieved and verify the effectiveness of the proposed method.
基金Supported by Special Project for Research on Prevention and Control of Air Pollution from Fire Coal in 2018 of Ministry of Ecology and Environment of the People’s Republic of China(2018A030)National Natural Science Foundation of China(41771498)
文摘Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However, the atmospheric environment in key areas such as Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and Fenwei Plain is still severe, and especially during the heating period heavy pollution occurs frequently, which has become the focus and difficulty of improving the quality of the atmospheric environment and is also the weakest link of China s air pollution control at present. How to alleviate air pollution, how to win the battle of pollution prevention and control, how to hold the fruits of the blue sky defense war, energy consumption is key.
文摘This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for anti-air radar screen. Therefore, we investigated the instances of anti-air radar screen for air defense weapon system for defense advanced country. Based on the collected data, we compared and analyzed the air defense weapon system radar screen design. In addition, we carry out a research for layout, configuration, standardization and design of the radar screen’s elements. Ultimately, it is essential to share a variety of battle field conditions such as enemy threat, enemy/friendly information, terrain information that can be effectively recognized. In this paper, we conduct case study for ergonomically development of automated/standardized radar screen. It is expected that this research improves the situational awareness and reduces the user’s task load.
文摘This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.