In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other...In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other regions of the country, the Yamoussoukro district is confronted with the phenomenon of evapotranspiration (ET). This is a very important component that comes into play in the water balance but also in the calculation of the water needs of agricultural crops. Consequently, its estimation is of paramount importance in research related to the rational management of water resources, particularly agricultural water. The objective of this study was to analyze the spatio-temporal distribution of actual evapotranspiration (AET) as a function of land cover and land use. The methodology used is based on the SEBAL model which uses remote sensing (Landsat 8_OLI/TIRS) and climatic data to estimate actual evapotranspiration and analyze the spatio-temporal distribution of AET. The results reveal that the AET varied from 0 to 5.44 mm/day over the period from December 2019 to February 2020 with an average value of 4.92 mm/day. The highest average values occurred for water bodies (4.90 mm/day) and flooded vegetation (4.88 mm/day) while the lowest values occurred in residential areas (2.04 mm/day). Furthermore, the results show that the difference between the SEBAL model and the FAO-Penman-Monteith method is minimal with an average RMSE of 0.36 mm/day for all the satellite images. This study demonstrates the considerable potential of remote sensing for the characterization and estimation of spatial evapotranspiration in the Zatta irrigated rice-growing area.展开更多
On the web it is very frequently found that good papers are published only in“Peer Reviewed Trusted Journals(PRTJ)”,while low quality papers are published in the“Predatory Publishing Journals”.Here we show that th...On the web it is very frequently found that good papers are published only in“Peer Reviewed Trusted Journals(PRTJ)”,while low quality papers are published in the“Predatory Publishing Journals”.Here we show that this is not true,because the quality of papers depends on the quality of the authors in the same manner that quality of teaching depends on the quality of professors.Since generally the authors are professors it is important to see the two sides of the“publishing medal”:authors and professors.We will use the SPQR Principle[《Semper Paratus ad Qualitatem et Rationem(Always Ready for Quality and Rationality)》]as the way to analyse papers,books and teaching;it seems that very few people have taken care of Quality of Methods(Deming,Juran,Gell-Mann,Shewhart,Einstein,Galilei).The cases analysed here are from PRT Journals and teaching documents.展开更多
The Green Revolution of the mid-20th century transformed agriculture worldwide and has resulted in envi-ronmental challenges.A new approach,the Second Green Revolution,seeks to enhance agricultural pro-ductivity while...The Green Revolution of the mid-20th century transformed agriculture worldwide and has resulted in envi-ronmental challenges.A new approach,the Second Green Revolution,seeks to enhance agricultural pro-ductivity while minimizing negative environmental impacts.Plant microbiomes play critical roles in plant growth and stress responses,and understanding plant–microbiome interactions is essential for developing sustainable agricultural practices that meet food security and safety challenges,which are among the United Nations Sustainable Development Goals.This review provides a comprehensive exploration of key deterministic processes crucial for developing microbiome management strategies,including the host effect,the facilitator effect,and microbe–microbe interactions.A hierarchical framework for plant mi-crobiome modulation is proposed to bridge the gap between basic research and agricultural applications.This framework emphasizes three levels of modulation:single-strain,synthetic community,and in situ mi-crobiome modulation.Overall,rational management of plant microbiomes has wide-ranging applications in agriculture and can potentially be a core technology for the Second Green Revolution.展开更多
文摘In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other regions of the country, the Yamoussoukro district is confronted with the phenomenon of evapotranspiration (ET). This is a very important component that comes into play in the water balance but also in the calculation of the water needs of agricultural crops. Consequently, its estimation is of paramount importance in research related to the rational management of water resources, particularly agricultural water. The objective of this study was to analyze the spatio-temporal distribution of actual evapotranspiration (AET) as a function of land cover and land use. The methodology used is based on the SEBAL model which uses remote sensing (Landsat 8_OLI/TIRS) and climatic data to estimate actual evapotranspiration and analyze the spatio-temporal distribution of AET. The results reveal that the AET varied from 0 to 5.44 mm/day over the period from December 2019 to February 2020 with an average value of 4.92 mm/day. The highest average values occurred for water bodies (4.90 mm/day) and flooded vegetation (4.88 mm/day) while the lowest values occurred in residential areas (2.04 mm/day). Furthermore, the results show that the difference between the SEBAL model and the FAO-Penman-Monteith method is minimal with an average RMSE of 0.36 mm/day for all the satellite images. This study demonstrates the considerable potential of remote sensing for the characterization and estimation of spatial evapotranspiration in the Zatta irrigated rice-growing area.
文摘On the web it is very frequently found that good papers are published only in“Peer Reviewed Trusted Journals(PRTJ)”,while low quality papers are published in the“Predatory Publishing Journals”.Here we show that this is not true,because the quality of papers depends on the quality of the authors in the same manner that quality of teaching depends on the quality of professors.Since generally the authors are professors it is important to see the two sides of the“publishing medal”:authors and professors.We will use the SPQR Principle[《Semper Paratus ad Qualitatem et Rationem(Always Ready for Quality and Rationality)》]as the way to analyse papers,books and teaching;it seems that very few people have taken care of Quality of Methods(Deming,Juran,Gell-Mann,Shewhart,Einstein,Galilei).The cases analysed here are from PRT Journals and teaching documents.
基金the National Natural Science Foundation of China (nos.32250015 and U21A2024)the Natural Science Foundation of Hebei Prov-ince (D2022503014)the Mid-Career Research Program (grant no.2020R1A2C3004237)of the National Research Foundation of the Republic of Korea for their financial support。
文摘The Green Revolution of the mid-20th century transformed agriculture worldwide and has resulted in envi-ronmental challenges.A new approach,the Second Green Revolution,seeks to enhance agricultural pro-ductivity while minimizing negative environmental impacts.Plant microbiomes play critical roles in plant growth and stress responses,and understanding plant–microbiome interactions is essential for developing sustainable agricultural practices that meet food security and safety challenges,which are among the United Nations Sustainable Development Goals.This review provides a comprehensive exploration of key deterministic processes crucial for developing microbiome management strategies,including the host effect,the facilitator effect,and microbe–microbe interactions.A hierarchical framework for plant mi-crobiome modulation is proposed to bridge the gap between basic research and agricultural applications.This framework emphasizes three levels of modulation:single-strain,synthetic community,and in situ mi-crobiome modulation.Overall,rational management of plant microbiomes has wide-ranging applications in agriculture and can potentially be a core technology for the Second Green Revolution.