Background:Attention has recently been drawn to the issue of transboundary invasions,where species introduced and naturalized in one country cross international borders and become problematic in neighbouring countrie...Background:Attention has recently been drawn to the issue of transboundary invasions,where species introduced and naturalized in one country cross international borders and become problematic in neighbouring countries.Robust modelling frameworks,able to identify the environmental drivers of invasion and forecast the current and future potential distribution of invasive species,are needed to study and manage invasions.Limitations due to the lack of species distribution and environmental data,or assumptions of modelling tools,often constrain the reliability of model predictions.Methods:We present a multiscale spatial modelling framework for transboundary invasions,incorporating robust modelling frameworks(Multimodel Inference and Ensemble Modelling) to overcome some of the limitations.The framework is illustrated using Hakea sericea Schrad.(Proteaceae),a shrub or small tree native to Australia and invasive in several regions of the world,including the Iberian Peninsula.Two study scales were considered:regional scale(western Iberia,including mainland Portugal and Galicia) and local scale(northwest Portugal).At the regional scale,the relative importance of environmental predictors sets was evaluated and ranked to determine the main general drivers for the species distribution,while the importance of each environmental predictor was assessed at the local scale.The potential distribution of H.sericea was spatially projected for both scale areas.Results:Model projections for western Iberia suggest that a large area is environmentally suitable in both Portugal and Spain.Climate and landscape composition sets were the most important determinants of this regional distribution of the species.Conversely,a geological predictor(schist lithology) was more important in explaining its local-scale distribution.Conclusions:After being introduced to Portugal,H.sericea has become a transboundary invader by expanding in parts of Galicia(Spain).The fact that a larger area is predicted as environmentally suitable in Spain raises concerns regarding its potential continued expansion.This highlights the importance of transboundary cooperation in the early management of invasions.By reliably identifying drivers and providing spatial projections of invasion at multiple scales,this framework provides insights for the study and management of biological invasions,including the assessment of transboundary invasion risk.展开更多
Pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle is an important invasive alien species in forests of China and has become one of the most destructive forest diseases. In order to im...Pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle is an important invasive alien species in forests of China and has become one of the most destructive forest diseases. In order to improve the resistance and resilience of pine forest ecosystems against B. xylophilus invasion and make the pine forest ecosystem more timely responsive to PWN invasion, we made some recommendations based on five years of intensive observations. We advocate a set of management measures with the theme “Prevention is priority, but integrated with curative techniques and ecological resilience” on the pine forest ecosystem invaded by B. xylophilus; details of accurate measures are proposed. The aim is to discover the underlying problems of present pine forest ecosys-tems and to take, correspondingly, administrative measures and strategies, which will encourage the pine forest ecosystem to develop in a benign way.展开更多
The spread of the western flower thrips, Frankliniella occidentalis (Pergande), has resulted in the world-wide destabilization of established integrated pest management programs for many crops. It is hypothesized th...The spread of the western flower thrips, Frankliniella occidentalis (Pergande), has resulted in the world-wide destabilization of established integrated pest management programs for many crops. It is hypothesized that frequent exposure to insecticides in intensive agriculture selected for resistant populations, which allowed invasive populations in the eastern USA to overcome biotic resistance from the native community of species. Research conducted in Florida to understand the role of biotic factors in limiting the abundance of the western flower thrips is reviewed. Orius spp. (Hemiptera: Anthocoridae) are effective predators that suppress populations of thrips on crop and non-crop hosts in southern and northern Florida. Orius are more effective predators of the western flower thrips than the native flower thrips, E tritici (Fitch) and E bispinosa (Morgan). The native species are competitors of the western flower thrips. Excessive fertilization and the use of broad-spectrum insecticides in crop fields further enhances populations of the western flower thrips. Interactions with native species clearly limit the abundance of western flower thrips in Florida, but populations are abundant in fertilized crop fields where application of insecticides excludes predators and competitor species.展开更多
基金funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETENational Funds through FCT-Foundation for Science and Technology under the project PTDC/AAGMAA/4539/2012/FCOMP-01-0124-FEDER-027863(IND_CHANGE)+3 种基金supported by POPH/FSE fundsNational Funds through FCT-Foundation for Science and Technology through Post-doctoral grant SFRH/BPD/84044/2012support from the DST-NRF Centre of Excellence for Invasion Biologythe National Research Foundation(grant 85417)
文摘Background:Attention has recently been drawn to the issue of transboundary invasions,where species introduced and naturalized in one country cross international borders and become problematic in neighbouring countries.Robust modelling frameworks,able to identify the environmental drivers of invasion and forecast the current and future potential distribution of invasive species,are needed to study and manage invasions.Limitations due to the lack of species distribution and environmental data,or assumptions of modelling tools,often constrain the reliability of model predictions.Methods:We present a multiscale spatial modelling framework for transboundary invasions,incorporating robust modelling frameworks(Multimodel Inference and Ensemble Modelling) to overcome some of the limitations.The framework is illustrated using Hakea sericea Schrad.(Proteaceae),a shrub or small tree native to Australia and invasive in several regions of the world,including the Iberian Peninsula.Two study scales were considered:regional scale(western Iberia,including mainland Portugal and Galicia) and local scale(northwest Portugal).At the regional scale,the relative importance of environmental predictors sets was evaluated and ranked to determine the main general drivers for the species distribution,while the importance of each environmental predictor was assessed at the local scale.The potential distribution of H.sericea was spatially projected for both scale areas.Results:Model projections for western Iberia suggest that a large area is environmentally suitable in both Portugal and Spain.Climate and landscape composition sets were the most important determinants of this regional distribution of the species.Conversely,a geological predictor(schist lithology) was more important in explaining its local-scale distribution.Conclusions:After being introduced to Portugal,H.sericea has become a transboundary invader by expanding in parts of Galicia(Spain).The fact that a larger area is predicted as environmentally suitable in Spain raises concerns regarding its potential continued expansion.This highlights the importance of transboundary cooperation in the early management of invasions.By reliably identifying drivers and providing spatial projections of invasion at multiple scales,this framework provides insights for the study and management of biological invasions,including the assessment of transboundary invasion risk.
文摘Pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle is an important invasive alien species in forests of China and has become one of the most destructive forest diseases. In order to improve the resistance and resilience of pine forest ecosystems against B. xylophilus invasion and make the pine forest ecosystem more timely responsive to PWN invasion, we made some recommendations based on five years of intensive observations. We advocate a set of management measures with the theme “Prevention is priority, but integrated with curative techniques and ecological resilience” on the pine forest ecosystem invaded by B. xylophilus; details of accurate measures are proposed. The aim is to discover the underlying problems of present pine forest ecosys-tems and to take, correspondingly, administrative measures and strategies, which will encourage the pine forest ecosystem to develop in a benign way.
文摘The spread of the western flower thrips, Frankliniella occidentalis (Pergande), has resulted in the world-wide destabilization of established integrated pest management programs for many crops. It is hypothesized that frequent exposure to insecticides in intensive agriculture selected for resistant populations, which allowed invasive populations in the eastern USA to overcome biotic resistance from the native community of species. Research conducted in Florida to understand the role of biotic factors in limiting the abundance of the western flower thrips is reviewed. Orius spp. (Hemiptera: Anthocoridae) are effective predators that suppress populations of thrips on crop and non-crop hosts in southern and northern Florida. Orius are more effective predators of the western flower thrips than the native flower thrips, E tritici (Fitch) and E bispinosa (Morgan). The native species are competitors of the western flower thrips. Excessive fertilization and the use of broad-spectrum insecticides in crop fields further enhances populations of the western flower thrips. Interactions with native species clearly limit the abundance of western flower thrips in Florida, but populations are abundant in fertilized crop fields where application of insecticides excludes predators and competitor species.