Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode...Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode, the Tafel slope is –0.084 V/dec and the apparent exchange current density is (1.02-3.0)×10-7 A/cm2. In the presence of manganese oxide on carbon electrode, the couple Mn3+/Mn4+ reacts with the O2 adsorbed on carbon sites forming O ?2 radicals and acceletes the dismutation of O 2?, which contributes to the catalytic effect of manganese oxide for OR reaction.展开更多
In order to increase the electrode surface area and enhance the charge storage capacity, we study the micro electro mechanical system technology to fabricate three-dimensional high aspect ratio micro-electrode structu...In order to increase the electrode surface area and enhance the charge storage capacity, we study the micro electro mechanical system technology to fabricate three-dimensional high aspect ratio micro-electrode structure based on glass. The anodic constant potential method is employed to deposit manganese oxide as electroactive substances on the micro-electrode surface. Cyclic voltammetry and constant current charge-discharge method are both used to prepare electrode electrochemical performance testing, with a two-dimensional electrode without structure for comparison. Experimental results show that three-dimensional elec- trode structure can effectively enhance the charge storage capacity. At 1.0 mA/cm2 charge- discharge density, the three-dimensional electrode shows a capacitance of 17.88 mF/cm2, seven times higher than the two-dimensional electrode.展开更多
Manganese is an essential micronutrient for all organisms;however at high concentrations it has a toxic effect. Manganese toxicity is a serious constraint to crop cultivation since it is taken-up by plants and can eas...Manganese is an essential micronutrient for all organisms;however at high concentrations it has a toxic effect. Manganese toxicity is a serious constraint to crop cultivation since it is taken-up by plants and can easily be passed into the food chain again causing symptoms of Parkinson’s disease. A fully validated square-wave adsorptive cathodic stripping voltammetry method has been developed for determination of Mn (II) as a complex with 2-(5’-bromo-2’-pyridylazo) 5-diethylaminophenol in aqueous solutions using a carbon paste electrode (CPE) modified with montmorillonite-Na clay. The results showed that the modified CPE (90% (w/w) graphite powder and 10% (w/w) montmorillonite-Na clay) exhibited excellent electrochemical activity towards the investigated Mn (II) complex in acetate buffer of pH = 5.0. Factors affecting the performance of the modified carbon paste electrode and the sensitivity of the described square- wave stripping voltammetry method, including the electrode composition, concentration of ligand, pulse parameters and preconcentration conditions were examined. A detection limit (S/N = 3) of 0.015μg·L-1 (2.73 × 10-10 mol·L-1) Mn (II) was achieved when a preconcentration time of 240 s was applied. Insignificant interferences from various inorganic and organic species were estimated. The described square-wave adsorptive cathodic stripping voltammetry method coupled with the modified carbon paste electrode has been successfully applied to Mn (II) analysis in different water samples.展开更多
Using potassium permanganate and acetic manganese as the reactants,amorphous manganese oxide was prepared with mechanochemical method. XRD was used for microstructure characterization,while cyclic voltammetry and cons...Using potassium permanganate and acetic manganese as the reactants,amorphous manganese oxide was prepared with mechanochemical method. XRD was used for microstructure characterization,while cyclic voltammetry and constant current charge-discharge were used for electrochemical performance testing. The positive electrode(PE) and negative electrode(NE) were investigated respectively in amorphous manganese oxide supercapacitor,aiming to find their different performances in charging-discharging. The results show that the crystalline structure is destroyed in both the PE and NE material during charge-discharge process. Thereinto,the NE suffers a bit more seriously. When cycling,the PE potential scope diminishes while the NE potential scope enlarges. The increased inner resistance makes the NE curves almost bended to be a right angle,but not the PE curves. The cell's equivalent series resistance(ESR) is more dependent on the NE,and the capacitance is mainly determined by the rapid descent of the NE potential range. The capacitances of the NE are highly rate-dependent,decreasing from 121.3 to 53.1 F/g,by 56.2%,over the range of 5-25 mV/s. However,the PE appears to be weakly dependent and its capacitance is only dropped by 22.1%.展开更多
Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulation...Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulations is designed using nanostructured working electrodes.Surface functionalization with manganese dioxide(MnO_(2))/fullerene-C_(60) nanocomposite exhibited the highest electrochemical responses with a sharp oxidation peak at about 336 mV that was obtained using the differential pulse voltammetry(DPV).The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)were applied,while the electrode matrix composition including types of nanomaterials,electroanalytical parameters,and pH eff ect were optimized.To that end,using the DPV,high sensitivity was obtained from the linear calibration curve ranged from 0.8 to 31.5μg·mL^(-1) with the correlation coe fficient of 0.99,limit of detection of 0.76μg·mL^(-1) and limit of quantification of 2.31μg·mL^(-1) .Accordingly,the designed approach is off ering a potential applicability towards the RFX determination in pharmaceutical preparations and its quality control.展开更多
A thin film of manganese hexacyanoferrate (MnHCF) was electrochemically formed on a glassy carbon (GC) electrode to prepare a chemically modified electrode (CME). The mechanism of film formation of MnHCF and its...A thin film of manganese hexacyanoferrate (MnHCF) was electrochemically formed on a glassy carbon (GC) electrode to prepare a chemically modified electrode (CME). The mechanism of film formation of MnHCF and its growth process were investigated in detail by cyclic voltammetry. The results show that the stoichiometric composition of MnHCF is Mn^ⅢFe^Ⅲ(CN)6, an analogue of prussian yellow. There exist three clear-cut stages in the whole modification process and the last stage is indispensable to the fabrication of homogenized, stable MnHCF film and must last for an appropriate time. The surface morphology of MnHCF/GC electrode was characterized by scanning electron microscopy (SEM), which further verified the effective deposition of MnHCF film on GC. The kinetic constants of MnHCF/GC electrode process were also evaluated. The resulting MnHCF film modified electrode presented good stability and high electrocatalytic activity toward the oxidation of H2O2, indicating that MnHCF film possesses function of catalase and can be expected for analytical purposes.展开更多
基金Project(1766-394201123) supported by the Natural Science Foundation of Hunan Province, China
文摘Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode, the Tafel slope is –0.084 V/dec and the apparent exchange current density is (1.02-3.0)×10-7 A/cm2. In the presence of manganese oxide on carbon electrode, the couple Mn3+/Mn4+ reacts with the O2 adsorbed on carbon sites forming O ?2 radicals and acceletes the dismutation of O 2?, which contributes to the catalytic effect of manganese oxide for OR reaction.
文摘In order to increase the electrode surface area and enhance the charge storage capacity, we study the micro electro mechanical system technology to fabricate three-dimensional high aspect ratio micro-electrode structure based on glass. The anodic constant potential method is employed to deposit manganese oxide as electroactive substances on the micro-electrode surface. Cyclic voltammetry and constant current charge-discharge method are both used to prepare electrode electrochemical performance testing, with a two-dimensional electrode without structure for comparison. Experimental results show that three-dimensional elec- trode structure can effectively enhance the charge storage capacity. At 1.0 mA/cm2 charge- discharge density, the three-dimensional electrode shows a capacitance of 17.88 mF/cm2, seven times higher than the two-dimensional electrode.
文摘Manganese is an essential micronutrient for all organisms;however at high concentrations it has a toxic effect. Manganese toxicity is a serious constraint to crop cultivation since it is taken-up by plants and can easily be passed into the food chain again causing symptoms of Parkinson’s disease. A fully validated square-wave adsorptive cathodic stripping voltammetry method has been developed for determination of Mn (II) as a complex with 2-(5’-bromo-2’-pyridylazo) 5-diethylaminophenol in aqueous solutions using a carbon paste electrode (CPE) modified with montmorillonite-Na clay. The results showed that the modified CPE (90% (w/w) graphite powder and 10% (w/w) montmorillonite-Na clay) exhibited excellent electrochemical activity towards the investigated Mn (II) complex in acetate buffer of pH = 5.0. Factors affecting the performance of the modified carbon paste electrode and the sensitivity of the described square- wave stripping voltammetry method, including the electrode composition, concentration of ligand, pulse parameters and preconcentration conditions were examined. A detection limit (S/N = 3) of 0.015μg·L-1 (2.73 × 10-10 mol·L-1) Mn (II) was achieved when a preconcentration time of 240 s was applied. Insignificant interferences from various inorganic and organic species were estimated. The described square-wave adsorptive cathodic stripping voltammetry method coupled with the modified carbon paste electrode has been successfully applied to Mn (II) analysis in different water samples.
文摘Using potassium permanganate and acetic manganese as the reactants,amorphous manganese oxide was prepared with mechanochemical method. XRD was used for microstructure characterization,while cyclic voltammetry and constant current charge-discharge were used for electrochemical performance testing. The positive electrode(PE) and negative electrode(NE) were investigated respectively in amorphous manganese oxide supercapacitor,aiming to find their different performances in charging-discharging. The results show that the crystalline structure is destroyed in both the PE and NE material during charge-discharge process. Thereinto,the NE suffers a bit more seriously. When cycling,the PE potential scope diminishes while the NE potential scope enlarges. The increased inner resistance makes the NE curves almost bended to be a right angle,but not the PE curves. The cell's equivalent series resistance(ESR) is more dependent on the NE,and the capacitance is mainly determined by the rapid descent of the NE potential range. The capacitances of the NE are highly rate-dependent,decreasing from 121.3 to 53.1 F/g,by 56.2%,over the range of 5-25 mV/s. However,the PE appears to be weakly dependent and its capacitance is only dropped by 22.1%.
基金the great gratitude to the project fund received from the National Research Centre(NRC,Cairo,Egypt)for the internal grant(No.11090306)。
文摘Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulations is designed using nanostructured working electrodes.Surface functionalization with manganese dioxide(MnO_(2))/fullerene-C_(60) nanocomposite exhibited the highest electrochemical responses with a sharp oxidation peak at about 336 mV that was obtained using the differential pulse voltammetry(DPV).The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)were applied,while the electrode matrix composition including types of nanomaterials,electroanalytical parameters,and pH eff ect were optimized.To that end,using the DPV,high sensitivity was obtained from the linear calibration curve ranged from 0.8 to 31.5μg·mL^(-1) with the correlation coe fficient of 0.99,limit of detection of 0.76μg·mL^(-1) and limit of quantification of 2.31μg·mL^(-1) .Accordingly,the designed approach is off ering a potential applicability towards the RFX determination in pharmaceutical preparations and its quality control.
基金Project supported by the National Natural Science Foundation of China (No. 20075012) the and the President Science Foundation of South China Agricultural University (No. K05053).
文摘A thin film of manganese hexacyanoferrate (MnHCF) was electrochemically formed on a glassy carbon (GC) electrode to prepare a chemically modified electrode (CME). The mechanism of film formation of MnHCF and its growth process were investigated in detail by cyclic voltammetry. The results show that the stoichiometric composition of MnHCF is Mn^ⅢFe^Ⅲ(CN)6, an analogue of prussian yellow. There exist three clear-cut stages in the whole modification process and the last stage is indispensable to the fabrication of homogenized, stable MnHCF film and must last for an appropriate time. The surface morphology of MnHCF/GC electrode was characterized by scanning electron microscopy (SEM), which further verified the effective deposition of MnHCF film on GC. The kinetic constants of MnHCF/GC electrode process were also evaluated. The resulting MnHCF film modified electrode presented good stability and high electrocatalytic activity toward the oxidation of H2O2, indicating that MnHCF film possesses function of catalase and can be expected for analytical purposes.