期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:1
1
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部